252 research outputs found

    Teneurins, a transmembrane protein family involved in cell communication during neuronal development

    Get PDF
    Abstract.: Teneurins are a unique family of transmembrane proteins conserved from Caenorhabditis elegans and Drosophila melanogaster to vertebrates, in which four paralogs exist. In vertebrates, teneurin expression is most prominent in the developing brain. Based on their distinct, complementary expression patterns, we suggest a possible function in the establishment of proper connectivity in the brain. Functional studies show that teneurins can stimulate neurite outgrowth, but they might also play a role in axon guidance as well as in target recognition and synaptogenesis, possibly mediated by homophilic interactions. Though teneurins are transmembrane proteins, there is evidence that the intracellular domain has a nuclear function, since it can interact with nuclear proteins and influence transcription. Therefore, we speculate that teneurins might be processed by proteolytic cleavage (possibly regulated intramembrane proteolysis), which is triggered by homophilic interactions or, alternatively, by the binding of a still unknown ligan

    Localization of tenascin in human skin wounds

    Get PDF
    A total of 56 surgically treated human skin wounds with a wound age between 8h and 7 months were investigated. Tenascin was visualized by immunohistochemistry and appeared first in the wound area pericellularly around fibroblastic cells approximately 2 days after wounding. A network-like interstitial positive staining pattern was first detectable in 3-day-old skin wounds. In all wounds with an age of 5 days or more, intensive reactivity for tenascin could be observed in the lesional area (dermal-epidermal junction, wound edge, areas of bleeding). In wounds with an age of more than approximately 1.5 months no positive staining occurred in the scar tissue. In conclusion, for forensic purposes, positive staining for tenascin restricted to the pericellular area of fibroblastic cells indicates a wound age of at least 2 days. Network-like structures appear after approximately 3 days or more. Since tenascin seems to be regularly detectable in skin wounds older than 5 days, the lack of a positive reaction in a sufficient number of specimens indicates a wound age of less than 5 days. The lack of a positive reaction in the granulation tissue of wounds with advanced wound age indicates a survival time of more than about 1.5 months, but a positive staining in older wounds cannot be excluded

    Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines

    Get PDF
    The extracellular matrix glycoprotein tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al (1996) Br J Cancer 74: 999-1004). To define regulation of TN further and investigate its function in ovarian cancer, a range of cell line models were studied. Concentrations of secreted TN in media from cultures of ovarian fibroblast cell lines were at least 100-fold greater than from carcinoma cell lines. Evidence for paracrine regulation of TN secretion was obtained by co-culture of carcinoma cells with fibroblast cells wherein secretion into the media was greater than from fibroblasts alone. Transforming growth factor (TGF)- beta 1, insulin-like growth factor (IGF)-II and progesterone all stimulated TN secretion while human choriogonadotropin (hCG), follicle-stimulating hormone (FSH) and gamma-interferon inhibited secretion. TGF-beta 1 produced the greatest stimulation of TN in cultured fibroblasts and its cc-expression with TN was examined in primary ovarian tumours, There was a significant association between the presence of moderate-strong expression of TN and TGF-beta 1. Evidence for TN having a functional role in ovarian carcinoma was obtained from adhesion and migration assays. The PE01, PE04, SKOV-3 and 59M cell lines all demonstrated marked adhesion to plastic coated with TN relative to the control protein bovine serum albumin (BSA) and expressed alpha 2 beta 1 and alpha 3 beta 1 integrins, The SKOV-3 cell line migrated more rapidly through TN than through BSA indicating that TN can facilitate migration of ovarian carcinoma cells

    Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage

    Get PDF
    BACKGROUND: Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes. RESULTS: A single tenascin gene was identified in the genome of C. intestinalis that encodes a polypeptide with domain features common to all vertebrate tenascins. Both pufferfish genomes encode five tenascin genes: two tenascin-C paralogs, a tenascin-R with domain organization identical to mammalian and avian tenascin-R, a small tenascin-X with previously undescribed GK repeats, and a tenascin-W. Four tenascin genes corresponding to tenascin-C, tenascin-R, tenascin-X and tenascin-W were also identified in the X. tropicalis genome. Multiple sequence alignment reveals that differences in the size of tenascin-W from various vertebrate classes can be explained by duplications of specific fibronectin type III domains. The duplicated domains are encoded on single exons and contain putative integrin-binding motifs. A phylogenetic tree based on the predicted amino acid sequences of the fibrinogen-related domains demonstrates that tenascin-C and tenascin-R are the most closely related vertebrate tenascins, with the most conserved repeat and domain organization. Taking all lines of evidence together, the data show that the tenascins referred to as tenascin-Y and tenascin-N are actually members of the tenascin-X and tenascin-W gene families, respectively. CONCLUSION: The presence of a tenascin gene in urochordates but not other invertebrate phyla suggests that tenascins may be specific to chordates. Later genomic duplication events led to the appearance of four family members in vertebrates: tenascin-C, tenascin-R, tenascin-W and tenascin-X

    The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induces fibrosis

    Full text link
    Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2) is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages

    Phylogenetic Analysis of the Teneurins: Conserved Features and Premetazoan Ancestry

    Get PDF
    Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing. The basic organization of teneurins is highly conserved in Bilateria: all teneurins have epidermal growth factor (EGF) repeats, a cysteine-rich domain, and a large region identical in organization to the carboxy-half of prokaryotic YD-repeat proteins. Teneurins were not found in the genomes of sponges, cnidarians, or placozoa, but the choanoflagellate Monosiga brevicollis has a gene encoding a predicted teneurin with a transmembrane domain, EGF repeats, a cysteine-rich domain, and a region homologous to YD-repeat proteins. Further examination revealed that most of the extracellular domain of the M. brevicollis teneurin is encoded on a single huge 6,829-bp exon and that the cysteine-rich domain is similar to sequences found in an enzyme expressed by the diatom Phaeodactylum tricornutum. This leads us to suggest that teneurins are complex hybrid fusion proteins that evolved in a choanoflagellate via horizontal gene transfer from both a prokaryotic gene and a diatom or algal gene, perhaps to improve the capacity of the choanoflagellate to bind to its prokaryotic prey. As choanoflagellates are considered to be the closest living relatives of animals, the expression of a primitive teneurin by an ancestral choanoflagellate may have facilitated the evolution of multicellularity and complex histogenesis in metazoa

    Tenascin-C Enhances Pancreatic Cancer Cell Growth and Motility and Affects Cell Adhesion through Activation of the Integrin Pathway

    Get PDF
    Background: Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. Methods: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. Results: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. Conclusion: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and migh
    corecore