27 research outputs found

    Effects of Aloe vera (L.) Burm. f. in gingivitis: a review of clinical trials

    No full text
    Background and objectives: Gingivitis is the inflammation of gingiva which, unless treated, will lead to periodontitis in susceptible patients. Aloe vera (L.) Burm. f. (aloe) from the family Asphodelaceae (Liliaceae) is a perennial plant which originates from South Africa. Potentially active compounds of the leaves include vitamins, simple/complex polysaccharides, minerals, organic acids, and phenolic compounds. The aim of this study was to review the literature regarding the efficacy and safety of aloe in patients with gingivitis. Methods: Using the search formula "Gingivitis [title/abstract] AND Aloe vera/ Aloe [all fields]", electronic databases, including PubMed, Scopus, Science direct and Cochrane library were searched for clinical trials on treatments containing aloe for gingivitis and relevant articles with English full-text from 2000 until 2017 were finally included.  Results: Total of 8 clinical trials were finally included in this paper. Various preparations of aloe such as mouth rinse and dentifrice have been investigated in patients with gingivitis. Each study has measured the periodontal health via a specific index including plaque index, gingivitis index, and bleeding index, as well as the microbial count and composition of the oral cavity and biomarkers of inflammation in crevicular fluid and aloe could significantly improve the above mentioned parameters. Conclusion: It was concluded that aloe could improve periodontal health either alone or as an adjunct to scaling and root planning treatments. Some studies also proved its efficacy to be equal to other commercially available products such as chlorhexidine without having their side effects

    Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective

    No full text
    Yasamin Davatgaran-Taghipour,1,2 Salar Masoomzadeh,3 Mohammad Hosein Farzaei,4,5 Roodabeh Bahramsoltani,6 Zahra Karimi-Soureh,7 Roja Rahimi,6,8 Mohammad Abdollahi9,10 1Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 2PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; 3Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; 4Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; 5Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; 6Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran; 7School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 8Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; 9Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; 10Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran Abstract: Cancer is defined as the abnormal cell growth that can cause life-threatening malignancies with high financial costs for patients as well as the health care system. Natural polyphenols have long been used for the prevention and treatment of several disorders due to their antioxidant, anti-inflammatory, cytotoxic, antineoplastic, and immunomodulatory effects discussed in the literature; thus, these phytochemicals are potentially able to act as chemopreventive and chemotherapeutic agents in different types of cancer. One of the problems regarding the use of polyphenolic compounds is their low bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanoformulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysin, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in pharmacotherapy; however, the obstacles in terms of their bioavailability in and toxicity to normal cells, as well as targeted drug delivery to malignant cells, can be overcome using nanoformulation-based technologies, which optimize the bioefficacy of these natural drugs. Keywords: natural products, flavonoid, anthocyanin, tumor, malignanc

    Tea polyphenols as natural products for potential future management of HIV infection - An overview

    No full text
    Taylor-Robinson, AW ORCiD: 0000-0001-7342-8348Belonging to the Lentivirus genus of animal retroviruses, human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS) which attacks cells of the immune system including CD4+ T lymphocytes, monocytes, macrophages and dendritic cells. A rapid progression to immunodeficiency and the higher transmissibility of HIV-1 compared to HIV-2 are hallmarks of the worldwide spread of AIDS. Conventional HIV treatments are limited by drug toxicity and by multi-drug resistance, caused by the high genetic variability of HIV. This has led researchers into new areas of drug discovery in search of novel therapeutic molecules. Accumulating evidence indicates that tea polyphenols possess a range of beneficial properties including anti-cancer, anti-inflammatory, anti-oxidative, neuro-protective, anti-bacterial, anti-fungal and anti-viral effects. The anti-HIV infection potential of tea polyphenols has been confirmed by several preclinical studies. This suggests that polyphenol-rich extracts of tea could be used as dietary supplements as part of a combined therapeutic regimen with conventional anti-HIV drugs. Phenolic structures may also be considered as backbones for the discovery of a new generation of anti-HIV remedies. This review provides a perspective on the anti-HIV activity of tea polyphenols and their development as a possible source of future drugs for the therapy of HIV/AIDS

    In vitro and in vivo antidiabetic activity of Tamarix stricta Boiss.: Role of autophagy

    No full text
    Ethnopharmacological relevance: Type 2 diabetes mellitus (DM) is a complicated metabolic disorder with no definite treatment. Different species of the genus Tamarix (tamarisk) are used by local people to treat DM. Tamarix stricta Boiss. is an endemic species to Iran with several traditional therapeutic uses in Persian Medicine. This study aimed to assess the antidiabetic activity of T. stricta. Materials and methods: Hydroethanolic extract of the plant was prepared and analyzed by High-performance liquid chromatography (HPLC). The protective effect of the extract was evaluated in streptozotocin (STZ)-induced toxicity and markers of autophagy in pancreatic RIN-5F cells. The effect of intragastric 10 or 20 mg/kg of the extract was compared with negative control (water) or positive control (metformin) treatment during four weeks of administration in high-fat diet + STZ-induced DM in Balb/c mice. Results: Results showed the presence of 8.436 mg of gallic acid in each gram of the extract. A significant cytoprotective effect was observed by T. stricta in STZ-induced toxicity in RIN-5F cells, partially due to the modulation of autophagy. Also, animals treated with the extract showed a significant improvement in glycemic and lipid profiles, liver function, and histopathologic features of pancreas and liver compared with the negative control. Conclusion: T. stricta demonstrated beneficial effects in animal model of DM; though, further studies are recommended to confirm the clinical use of this plant in DM. © 2020 Elsevier B.V

    Phytochemical and toxicological evaluation of Tamarix stricta Boiss

    No full text
    The genus Tamarix includes several plant species well-known for their medicinal properties since ancient times. Tamarix stricta Boiss is a plant native to Iran which has not been previously investigated regarding its phytochemical and biological properties. This study assessed phytochemical and toxicological aspects of T. stricta. The plant was collected from Kerman province of Iran and after authentication by botanist, it was extracted with 70% ethanol. Total phenolic compounds, total flavonoids, and antioxidant properties were measured using spectrophometric methods. Quercetin content of the extract was measured after complete acid hydrolysis with high-performance liquid chromatography. The phytochemical profile of the extract was provided using liquid chromatography-mass spectrometry method. Acute toxicity study with a single intragastric dose of 5000 mg/kg of the extract and sub-chronic toxicity using 50, 100, and 250 mg/kg of the extract was assessed in Wistar rats. Phytochemical analysis showed that polyphenols constitute the major components of the extract. Also, the extract contained 1.552 ± 0.35 mg/g of quercetin. Biochemical, hematological, and histological evaluations showed no sign of toxicity in animals. Our experiment showed that T. stricta is a rich source of polyphenols and can be a safe medicinal plant. Further pharmacological evaluations are recommended to assess the therapeutic properties of this plant

    Tea polyphenols as natural products for potential future management of HIV infection - An overview

    No full text
    Belonging to the Lentivirus genus of animal retroviruses, human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS) which attacks cells of the immune system including CD4+ T lymphocytes, monocytes, macrophages and dendritic cells. A rapid progression to immunodeficiency and the higher transmissibility of HIV-1 compared to HIV-2 are hallmarks of the worldwide spread of AIDS. Conventional HIV treatments are limited by drug toxicity and by multi-drug resistance, caused by the high genetic variability of HIV. This has led researchers into new areas of drug discovery in search of novel therapeutic molecules. Accumulating evidence indicates that tea polyphenols possess a range of beneficial properties including anti-cancer, anti-inflammatory, anti-oxidative, neuro-protective, anti-bacterial, anti-fungal and anti-viral effects. The anti-HIV infection potential of tea polyphenols has been confirmed by several preclinical studies. This suggests that polyphenol-rich extracts of tea could be used as dietary supplements as part of a combined therapeutic regimen with conventional anti-HIV drugs. Phenolic structures may also be considered as backbones for the discovery of a new generation of anti-HIV remedies. This review provides a perspective on the anti-HIV activity of tea polyphenols and their development as a possible source of future drugs for the therapy of HIV/AIDS

    Malva species: Insights on its chemical composition towards pharmacological applications

    No full text
    Malvaceae family is typical from the Mediterranean region, contains 240 genera and more than 4,200 species. They are most commonly used as ornamental plants, although they can also be conceived as a food resource and remedy for various diseases, such as digestive, respiratory, genitourinary, throat infections, and skeletal and skin disorders, as also injuries where they are profoundly applied for skin care and as antiseptic and demulcent. They also possess diuretic, lenitive, spasmolytic, and laxative effects, besides to be used as antidiarrheal. Thus, the present review provides in‐depth data on Malva spp. potential applications and phytochemical composition for food and pharmaceutical industries. Habitat and cultivation conditions and the clinical reports related to its biological effects are also emphasized. Malva spp. possess a wide variety of chemical constituents (such as polysaccharides, coumarins, flavonoids, polyphenols, vitamins, terpenes, and tannins) found in different plant organs, especially in leaves and flowers, connected to their biological activity. In general, Malva spp. have rather moderate antimicrobial activity, high antiinflammatory and wound healing activities, strong antioxidant activity, and anticancer properties. Results from in vitro and in vivo experiments encourage more in‐depth studies, namely clinical trials, towards to improve knowledge on the use of Malva spp. for the treatment of various health conditions in humans
    corecore