34 research outputs found

    Marine Biotechnology: A New Vision and Strategy for Europe

    Get PDF
    Marine Board-ESF The Marine Board provides a pan-European platform for its member organisations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organisations (both research institutes and research funding agencies) towards the development of a common vision on the research priorities and strategies for marine science in Europe. In 2010, the Marine Board represents 30 Member Organisations from 19 countries. The Marine Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its Member Organisations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European Marine Research Area

    Elevage des anguilles au Japon (Anguilla japonica, A.anguilla)

    No full text
    National audienc

    Culturing marine bacteria - an essential prerequisite for biodiscovery

    Get PDF
    The definitive version is available at ww3.interscience.wiley.com. En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/00035/14631/11950.pdfInternational audienceThe potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long-standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell-to-cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro-droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long-term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high-throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater-based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria

    Marine Biotechnology

    No full text
    ISBN 978-90-481-8616-

    Continuous enrichment cultures : insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys

    No full text
    The prokaryotic diversity of culturable thermophilic communities of deep-sea hydrothermal chimneys was analysed using a continuous enrichment culture performed in a gas-lift bioreactor, and compared to classical batch enrichment cultures in vials. Cultures were conducted at 60 degrees C and pH 6.5 using a complex medium containing carbohydrates, peptides and sulphur, and inoculated with a sample of a hydrothermal black chimney collected at the Rainbow field, Mid-Atlantic Ridge, at 2,275 m depth. To assess the relevance of both culture methods, bacterial and archaeal diversity was studied using cloning and sequencing, DGGE, and whole-cell hybridisation of 16S rRNA genes. Sequences of heterotrophic microorganisms belonging to the genera Marinitoga, Thermosipho, Caminicella (Bacteria) and Thermococcus (Archaea) were obtained from both batch and continuous enrichment cultures while sequences of the autotrophic bacterial genera Deferribacter and Thermodesulftitator were only detected in the continuous bioreactor culture. It is presumed that over time constant metabolite exchanges will have occurred in the continuous enrichment culture enabling the development of a more diverse prokaryotic community. In particular, CO2 and H-2 produced by the heterotrophic population would support the growth of autotrophic populations. Therefore, continuous enrichment culture is a useful technique to grow over time environmentally representative microbial communities and obtain insights into prokaryotic species interactions that play a crucial role in deep hydrothermal environments
    corecore