11,822 research outputs found

    Comparative study on freeze-dried lactic cheese starters and ripening cultures for the production of camembert cheese : a thesis submitted in partial fulfillment of the requirements for the degree of Master of Food Technology, Massy [i.e. Massey] University, Albany, New Zealand.

    Get PDF
    Background and Methodology The key to success in producing cheeses is the performance of the starter cultures (Parente and Cogan, 2004). Storage of freeze-dried cheese cultures at refrigeration and ambient temperature or higher provides convenience to culture handling and transportation, as well as reduce cost. This study investigated the effects of 4 storage temperatures: -18Ā°C, 4Ā°C, 20Ā°C and 37Ā°C on the stability of mesophilic lactic cheese starters and ripening cultures intended for Camembert production. In phase one, a 22 randomized complete block design (RCBD) was used to determine the potential of 14 commercial freeze-dried direct-vat-set (DVS) mixed cultures to produce Camembert after 5 months storage at the 4 temperatures. The cultures used were: O-type: Lactococcus (L.) lactis subsp. lactis, L. lactis subsp. cremoris; LD-type: L. lactis subsp. lactis, L. lactis subsp. cremoris, L. lactis subsp. lactis biovar. diacetylactis and Leuconostoc species (Leuconostoc (Leuc.) lactis and Leuc. mesenteroides subsp. cremoris) and a mould, Penicillum (P.) camemberti. During storage, the cultures were analysed for cell viability, acid production, colour and species composition. The characterised cultures were screened to select the most stable cultures with good potential for Camembert production. In phase two, a 23 RCBD design was used to study the potential of the cultures to produce prototype Camembert cheese using I-MakeĀ® Limited domestic cheese kits. The prepared cheeses were characterised for acidity, viable cell counts content, texture, volatile aromatic compounds and proteolysis using standard procedures. Results and Discussion Viable cell counts and acidification potential of cultures decreased (P<0.05) during storage at selected temperatures for 5 months. Cultures stored at 37Ā°C were the most affected. Proportion of citrate-fermenting lactic acid bacteria (LAB) in LD-type starters also decreased in a similar pattern. Cell inactivation at high temperature was probably attributed to high oxidation, browning reactions, lactose crystallization, changes in glass transition temperature (Tg) of culture-lactose matrix and loss of Ī²-galactosidase enzyme activity, which were possibly also affected by water activity (aw) of the culture during storage (Higl et al., 2007; Kurtmann et al., 2009c). Viability and activities of cultures stored at 4 and 20Ā°C after 5 months were comparable to those of -18Ā°C cultures and levels normally used in industry. Thus, the cultures demonstrated good potential for Camembert cheese production. Similar patterns of microbial growth (LAB and P. camemberti) and acidification were observed in both cheeses (O- and LD-types) during cheese fermentation. However, cheeses fermented with O-type starters had better growth and acidification activity (P<0.05), which may be attributed to compositional differences of culture, leading to variable metabolic patterns (Mcsweeney and Fox, 2004). Cheeses produced with cultures stored at 4 and 20Ā°C had lower levels of cell growth and acidity (P<0.05), suggesting that the microorganisms could have been affected by prolonged storage at relatively high temperatures. During cheese ripening, changes in microbial content, acidity, proteolysis, texture and aroma compounds, were similar, and significantly changed (P<0.05) with ripening time. Viable cell counts of LAB reduced, while pH and P. camemberti counts increased. Increase of pH may result from lactate metabolism by P. camemberti creating an alkaline environment due to the deamination activity of the mould (Spinnler and Gripon, 2004). Proteolysis of cheeses was correlated (P<0.05) with LAB and P. camemberti activity as well as the pH of Background and Methodology The key to success in producing cheeses is the performance of the starter cultures (Parente and Cogan, 2004). Storage of freeze-dried cheese cultures at refrigeration and ambient temperature or higher provides convenience to culture handling and transportation, as well as reduce cost. This study investigated the effects of 4 storage temperatures: -18Ā°C, 4Ā°C, 20Ā°C and 37Ā°C on the stability of mesophilic lactic cheese starters and ripening cultures intended for Camembert production. In phase one, a 22 randomized complete block design (RCBD) was used to determine the potential of 14 commercial freeze-dried direct-vat-set (DVS) mixed cultures to produce Camembert after 5 months storage at the 4 temperatures. The cultures used were: O-type: Lactococcus (L.) lactis subsp. lactis, L. lactis subsp. cremoris; LD-type: L. lactis subsp. lactis, L. lactis subsp. cremoris, L. lactis subsp. lactis biovar. diacetylactis and Leuconostoc species (Leuconostoc (Leuc.) lactis and Leuc. mesenteroides subsp. cremoris) and a mould, Penicillum (P.) camemberti. During storage, the cultures were analysed for cell viability, acid production, colour and species composition. The characterised cultures were screened to select the most stable cultures with good potential for Camembert production. In phase two, a 23 RCBD design was used to study the potential of the cultures to produce prototype Camembert cheese using I-MakeĀ® Limited domestic cheese kits. The prepared cheeses were characterised for acidity, viable cell counts content, texture, volatile aromatic compounds and proteolysis using standard procedures. Results and Discussion Viable cell counts and acidification potential of cultures decreased (P<0.05) during storage at selected temperatures for 5 months. Cultures stored at 37Ā°C were the most affected. Proportion of citrate-fermenting lactic acid bacteria (LAB) in LD-type starters also decreased in a similar pattern. Cell inactivation at high temperature was probably attributed to high oxidation, browning reactions, lactose crystallization, changes in glass transition temperature (Tg) of culture-lactose matrix and loss of Ī²-galactosidase enzyme activity, which were possibly also affected by water activity (aw) of the culture during storage (Higl et al., 2007; Kurtmann et al., 2009c). Viability and activities of cultures stored at 4 and 20Ā°C after 5 months were comparable to those of -18Ā°C cultures and levels normally used in industry. Thus, the cultures demonstrated good potential for Camembert cheese production. Similar patterns of microbial growth (LAB and P. camemberti) and acidification were observed in both cheeses (O- and LD-types) during cheese fermentation. However, cheeses fermented with O-type starters had better growth and acidification activity (P<0.05), which may be attributed to compositional differences of culture, leading to variable metabolic patterns (Mcsweeney and Fox, 2004). Cheeses produced with cultures stored at 4 and 20Ā°C had lower levels of cell growth and acidity (P<0.05), suggesting that the microorganisms could have been affected by prolonged storage at relatively high temperatures. During cheese ripening, changes in microbial content, acidity, proteolysis, texture and aroma compounds, were similar, and significantly changed (P<0.05) with ripening time. Viable cell counts of LAB reduced, while pH and P. camemberti counts increased. Increase of pH may result from lactate metabolism by P. camemberti creating an alkaline environment due to the deamination activity of the mould (Spinnler and Gripon, 2004). Proteolysis of cheeses was correlated (P<0.05) with LAB and P. camemberti activity as well as the pH ofBackground and Methodology The key to success in producing cheeses is the performance of the starter cultures (Parente and Cogan, 2004). Storage of freeze-dried cheese cultures at refrigeration and ambient temperature or higher provides convenience to culture handling and transportation, as well as reduce cost. This study investigated the effects of 4 storage temperatures: -18Ā°C, 4Ā°C, 20Ā°C and 37Ā°C on the stability of mesophilic lactic cheese starters and ripening cultures intended for Camembert production. In phase one, a 22 randomized complete block design (RCBD) was used to determine the potential of 14 commercial freeze-dried direct-vat-set (DVS) mixed cultures to produce Camembert after 5 months storage at the 4 temperatures. The cultures used were: O-type: Lactococcus (L.) lactis subsp. lactis, L. lactis subsp. cremoris; LD-type: L. lactis subsp. lactis, L. lactis subsp. cremoris, L. lactis subsp. lactis biovar. diacetylactis and Leuconostoc species (Leuconostoc (Leuc.) lactis and Leuc. mesenteroides subsp. cremoris) and a mould, Penicillum (P.) camemberti. During storage, the cultures were analysed for cell viability, acid production, colour and species composition. The characterised cultures were screened to select the most stable cultures with good potential for Camembert production. In phase two, a 23 RCBD design was used to study the potential of the cultures to produce prototype Camembert cheese using I-MakeĀ® Limited domestic cheese kits. The prepared cheeses were characterised for acidity, viable cell counts content, texture, volatile aromatic compounds and proteolysis using standard procedures. Results and Discussion Viable cell counts and acidification potential of cultures decreased (P<0.05) during storage at selected temperatures for 5 months. Cultures stored at 37Ā°C were the most affected. Proportion of citrate-fermenting lactic acid bacteria (LAB) in LD-type starters also decreased in a similar pattern. Cell inactivation at high temperature was probably attributed to high oxidation, browning reactions, lactose crystallization, changes in glass transition temperature (Tg) of culture-lactose matrix and loss of Ī²-galactosidase enzyme activity, which were possibly also affected by water activity (aw) of the culture during storage (Higl et al., 2007; Kurtmann et al., 2009c). Viability and activities of cultures stored at 4 and 20Ā°C after 5 months were comparable to those of -18Ā°C cultures and levels normally used in industry. Thus, the cultures demonstrated good potential for Camembert cheese production. Similar patterns of microbial growth (LAB and P. camemberti) and acidification were observed in both cheeses (O- and LD-types) during cheese fermentation. However, cheeses fermented with O-type starters had better growth and acidification activity (P<0.05), which may be attributed to compositional differences of culture, leading to variable metabolic patterns (Mcsweeney and Fox, 2004). Cheeses produced with cultures stored at 4 and 20Ā°C had lower levels of cell growth and acidity (P<0.05), suggesting that the microorganisms could have been affected by prolonged storage at relatively high temperatures. During cheese ripening, changes in microbial content, acidity, proteolysis, texture and aroma compounds, were similar, and significantly changed (P<0.05) with ripening time. Viable cell counts of LAB reduced, while pH and P. camemberti counts increased. Increase of pH may result from lactate metabolism by P. camemberti creating an alkaline environment due to the deamination activity of the mould (Spinnler and Gripon, 2004). Proteolysis of cheeses was correlated (P<0.05) with LAB and P. camemberti activity as well as the pH of samples. Softening of cheese was associated with increased proteolysis and pH due to the growth of P. camemberti (Spinnler and Gripon, 2004). A range of volatile organic compounds, dominated by fatty acids, alcohols and aldehydes were identified in cheese samples as reported in other studies (Sable and Cottenceau, 1999). Changes in 3-methylbutanal and 3-methylbutanol profiles of samples reflected the degradation of leucine,, synthesis of the aldehyde and its degradation to branched alcohols as a consequence of peptidolytic activity of LAB (Yvon and Rijene, 2001) and enzymatic activity of P. camemberti (Molimard and Spinnler, 1996). Increased concentrations of 2-heptanone, 2-nonanone and butyric acid in cheese samples suggested lipolytic activity in all samples (Molimard and Spinnler, 1996). The activity of P. camemberti involved in Ī²-oxidation pathway for producing methyl ketones was also demonstrated confirmed by identified metabolites. Higher proteolysis and softness in LD-cheeses than O-type, suggested a higher degree of cheese ripening (Ardƶ, 1999), which may be attributed to proteolytic and peptidolytic activity of LD-starters (Tzanetaki et al., 1993). Higher proteolysis may be also associated with higher pH of cheese curd at draining, which facilitated higher syneresis. Increased whey content of curd may retain higher concentration of coagulant enzyme in the curd (Guinee and Wilkinson, 1992) and effectively stimulate the growth of P. camemberti, thus probably allowing proteolysis to occur more readily (Grappin et al., 1985). A relatively higher concentration of 3-methylbutanal was found in O-type cheeses than in LD-type. This suggests that LAB in O-type starters may exhibit higher activity in degrading leucine to 3-methylbutanal than LD-type starters (Yvon and Rijene, 2001). 2,3-butandione was suspected in LD-type cheeses but not in O-type samples, demonstrating the active role of citrate-fermenting bacteria of LD-starters (Mcsweeney and Fox, 2004). Results indicate that storage temperature of cultures had a significant (P<0.05) impact on viable cell counts and acidity of samples. In spite of reduced cell counts, proteolysis, texture and aroma of the prototype cheese samples were not affected (P<0.05). Although there were no differences between the Camembert cheeses, 4 and 20Ā°C cultures used in cheese-making may enhance the ripening process (Ardƶ, 1999) than -18Ā°C cultures, as indicated by relatively higher proteolysis and degree of softening. Lower levels of 3-methylbutanal in samples containing 4 and 20Ā°C cultures was probably due to the reduced aminotransferases activity of LAB (Yvon and Rijene, 2001) after prolonged storage at the two temperatures. The slightly higher levels of 2-heptanone, 2-nonanone and butyric acids in samples with 4 and 20Ā°C cultures were probably due to increased lipolytic activity of enhanced growth of P. camemberti (Molimard and Spinnler, 1996) during cheese ripening. Conclusion LAB starter cultures and P. camemberti can be stored for 5 months at 4 and 20Ā°C without affecting their activities and the quality of prototype Camembert produced. Camembert cheese samples produced in this study had typical characteristics of this type of cheese. Cheese fermented with LD-type starters showed extra flavour enhancement potential and the products had higher degree of softening due pronounced proteolysis. Cultures stored at 37Ā°C for 5 months were characterised by poor viable cells and capability to the produce acid, therefore, they were not suitable for Camembert cheese production

    Stabilized Nearest Neighbor Classifier and Its Statistical Properties

    Full text link
    The stability of statistical analysis is an important indicator for reproducibility, which is one main principle of scientific method. It entails that similar statistical conclusions can be reached based on independent samples from the same underlying population. In this paper, we introduce a general measure of classification instability (CIS) to quantify the sampling variability of the prediction made by a classification method. Interestingly, the asymptotic CIS of any weighted nearest neighbor classifier turns out to be proportional to the Euclidean norm of its weight vector. Based on this concise form, we propose a stabilized nearest neighbor (SNN) classifier, which distinguishes itself from other nearest neighbor classifiers, by taking the stability into consideration. In theory, we prove that SNN attains the minimax optimal convergence rate in risk, and a sharp convergence rate in CIS. The latter rate result is established for general plug-in classifiers under a low-noise condition. Extensive simulated and real examples demonstrate that SNN achieves a considerable improvement in CIS over existing nearest neighbor classifiers, with comparable classification accuracy. We implement the algorithm in a publicly available R package snn.Comment: 48 Pages, 11 Figures. To Appear in JASA--T&

    Supply Chain Management of Fresh Produce: Melons in Western China

    Get PDF
    The western part of China has a long history and reputation of growing a variety of quality melons largely due to its semi arid agronomic environment. In the past decade, the industry suffered from the interrelated issues of unreliable quality and intense price competition. Even though both the government and supply chain stakeholders are aware of the problems, there is a need to look at the issues from a supply chain perspective and new ways of managing the melon supply chains are to be explored. This paper analysed the melon supply chain in western China in the areas of logistical efficiency and supply chain relationship management. The results of the analysis offer insights for improving the efficiency of the melon supply chain and the competitiveness the industry. The results also shed lights for other supply chains of fresh produce in developing countries in general.melon, China, supply chain, value chain, Crop Production/Industries, Industrial Organization, O13, O5, Q13,

    Few-Shot Image Recognition by Predicting Parameters from Activations

    Full text link
    In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, e.g. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method that can adapt a pre-trained neural network to novel categories by directly predicting the parameters from the activations. Zero training is required in adaptation to novel categories, and fast inference is realized by a single forward pass. We evaluate our method by doing few-shot image recognition on the ImageNet dataset, which achieves the state-of-the-art classification accuracy on novel categories by a significant margin while keeping comparable performance on the large-scale categories. We also test our method on the MiniImageNet dataset and it strongly outperforms the previous state-of-the-art methods

    What Makes the Article ā€œCondition Monitoring and Fault Diagnosis of Electrical Motorsā€”A Reviewā€ So Popular?

    Get PDF
    Electric motors are widely used in the industrial, commercial, residential, and transportation sectors to power the systems that provide goods and services to end users. The failure of electric motors may cause significant production or service interruption and financial losses. To improve the quality of service of systems driven by electric motors, it is vital to continuously improve the reliability of electric motors. Driven by this demand, various condition monitoring and fault diagnostic techniques for electric motors have been developed by academia and industry over the past decades. The article ā€œCondition Monitoring and Fault Diagnosis of Electrical Motorsā€”A Review,ā€ written by Subhasis Nandi, Hamid A. Toliyat, and Xiaodong Li and published by the IEEE Transactions on Energy Conversion, reviewed the major faults in electric motors and the corresponding fault diagnostic methods that were reported in journal and conference publications and books published between the 1980s and 2005. Such a review provides a birdā€™s-eye view on the signals used and signal processing methods developed before 2005 for the diagnosis of specific faults in electric motors. Such a birdā€™s-eye view helped researchers avoid repeating past work when carrying out research in this field. Therefore, since the article was published, it has been used by researchers in the field as a major reference in their new publications to discuss the contributions of their work with respect to the techniques developed before 2005, as evidenced by 2,322 citations as of 8 May 2022, according to Google Scholar Citations. The number of annual citations of this article increased continuously from 2006 to 2015 and has stayed steady around 200 in the past five years. The high popularity of this article is mainly attributed to its high-quality, comprehensive review as well as the increasing interest and demand in the development of effective condition monitoring and prognostic health management techniques for electric motors, which have been driven by several major factors: the increasing applications of electric motors in complex tasks that require high reliability; new development of data analytic and artificial intelligence (AI) techniques; interdisciplinary and transformative nature of the research in this field; and significant improvements of computational resources for the implementation of condition monitoring systems
    • ā€¦
    corecore