5,006 research outputs found
Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE
Localized strongly Doppler-shifted Stokes V signals were detected by
IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that
are observed as linear polarization features. We aim to set constraints on the
physical nature and causes of these highly Doppler-shifted signals. In
particular, the temporal relation between the appearance of transverse fields
and the strong Doppler shifts is analyzed in some detail. We calculated the
time difference between the appearance of the strong flows and the linear
polarization. We also obtained the distances from the center of various
features to the nearest neutral lines and whether they overlap or not. These
distances were compared with those obtained from randomly distributed points on
observed magnetograms. Various cases of strong flows are described in some
detail. The linear polarization signals precede the appearance of the strong
flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are
closer (0.19") to magnetic neutral lines than randomly distributed points
(0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a
neutral line that is located between the emerging field and pre-existing
fields. That the remaining 20% do not show a close-by pre-existing field could
be explained by a lack of sensitivity or an unfavorable geometry of the
pre-existing field, for instance, a canopy-like structure. Transverse fields
occurred before the observation of the strong Doppler shifts. The process is
most naturally explained as the emergence of a granular-scale loop that first
gives rise to the linear polarization signals, interacts with pre-existing
fields (generating new neutral line configurations), and produces the observed
strong flows. This explanation is indicative of frequent small-scale
reconnection events in the quiet Sun.Comment: 11 pages, 8 figure
Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor
The upgrade of the cold neutron triple-axis spectrometer FLEXX is described.
We discuss the characterisation of the gains from the new primary spectrometer,
including a larger guide and double focussing monochromator, and present
measurements of the energy and momentum resolution and of the neutron flux of
the instrument. We found an order of magnitude gain in intensity (at the cost
of coarser momentum resolution), and that the incoherent elastic energy widths
are measurably narrower than before the upgrade. The much improved count rate
should allow the use of smaller single crystals samples and thus enable the
upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table
The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data
Solar granules are bright patterns surrounded by dark channels called
intergranular lanes in the solar photosphere and are a manifestation of
overshooting convection. Observational studies generally find stronger upflows
in granules and weaker downflows in intergranular lanes. This trend is,
however, inconsistent with the results of numerical simulations in which
downflows are stronger than upflows through the joint action of gravitational
acceleration/deceleration and pressure gradients. One cause of this discrepancy
is the image degradation caused by optical distortion and light diffraction and
scattering that takes place in an imaging instrument. We apply a deconvolution
technique to Hinode/SP data in an attempt to recover the original solar scene.
Our results show a significant enhancement in both, the convective upflows and
downflows, but particularly for the latter. After deconvolution, the up- and
downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average
geometrical height of roughly 50 km, respectively. We found that the velocity
distributions after deconvolution match those derived from numerical
simulations. After deconvolution the net LOS velocity averaged over the whole
FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap
Energy Flow Puzzle of Soliton Ratchets
We study the mechanism of directed energy transport for soliton ratchets. The
energy flow appears due to the progressive motion of a soliton (kink) which is
an energy carrier. However, the energy current formed by internal system
deformations (the total field momentum) is zero. We solve the underlying puzzle
by showing that the energy flow is realized via an {\it inhomogeneous} energy
exchange between the system and the external ac driving. Internal kink modes
are unambiguously shown to be crucial for that transport process to take place.
We also discuss effects of spatial discretization and combination of ac and dc
external drivings.Comment: 4 pages, 3 figures, submitted to PR
Finite-size effects on multibody neutrino exchange
The effect of multibody massless neutrino exchanges between neutrons inside a
finite-size neutron star is studied. We use an effective Lagrangian, which
incorporates the effect of the neutrons on the neutrinos. Following Schwinger,
it is shown that the total interaction energy density is computed by comparing
the zero point energy of the neutrino sea with and without the star. It has
already been shown that in an infinite-size star the total energy due to
neutrino exchange vanishes exactly. The opposite claim that massless neutrino
exchange would produce a huge energy is due to an improper summation of an
infrared-divergent quantity. The same vanishing of the total energy has been
proved exactly in the case of a finite star in a one-dimensional toy model.
Here we study the three-dimensional case. We first consider the effect of a
sharp star border, assumed to be a plane. We find that there is a non-
vanishing of the zero point energy density difference between the inside and
the outside due to the refraction index at the border and the consequent
non-penetrating waves. An analytical and numerical calculation for the case of
a spherical star with a sharp border confirms that the preceding border effect
is the dominant one. The total result is shown to be infrared-safe, thus
confirming that there is no need to assume a neutrino mass. The ultraviolet
cut-offs, which correspond in some sense to the matching of the effective
theory with the exact one, are discussed. Finally the energy due to long
distance neutrino exchange is of the order of , i.e. negligible with respect to the neutron mass density.Comment: Latex file (Revtex), 34 pages, 8 postscripted figure
Synchroton radiation experiments in Spanish cultural heritage baroque materials: an overview.
6 pages, 5 figures, 18 references. Electronic Newsletter. CSIC Thematic Network on Cultural Heritage and Network on
Science and Technology for the Conservation of Cultural Heritage
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC,
Apartado de Correos 1052, 41080 Sevilla (Spain)The field of Cultural Heritage has been actively
studied by several research groups in different
parts of the world. Within the sixth and
seventh Framework Program of the EU, the EU
ARTECH project (Access, Research and
Technology for the conservation of the
European Cultural Heritage) [1], and its
successor CHARISMA (Cultural Heritage
Advanced Research Infrastructures: Synergy
for a Multidisciplinary Approach to
Conservation /Restoration) [2], a consortium
among 13 internationally distinguished
European infrastructures devoted to artwork
conservation, offer a coherent set of
possibilities to access to the most advanced
scientific instrumentations and knowledge on
the field of cultural heritage studies.
In Spain, particularly in Andalusia, over the
past decade, multi-disciplinary research has
been carried out in the interface between art,
archaeology, biology and solid state science.
The Andalusian Government has become
involved; they promoted different programs
with the aim to support new advances in this
area. The Institute for Natural Resources and
Agrobiology of Seville, the Fine Arts Schools
of the University of Seville, and the University
of Malaga are involved in obtaining and
developing this interface using new strategies
to support the field of cultural heritage.
The Cultural Heritage Group at the Materials
Science Institute of Seville has an extensive
expertise in the advancement of conservation
science and the characterisation of materials
and alteration processes. A strong effort has
been made in the last few years to develop
innovative methodologies and techniques
using synchrotron radiation sources. These
advancements have contributed to the
knowledge of cultural heritage and
conservation science.This work was supported by Ministry of
Science and Technology of Spain (MAT 2007-
63234 and MAT2010-20660).Peer reviewe
Chromospheric polarimetry through multi-line observations of the 850 nm spectral region
Future solar missions and ground-based telescopes aim to understand the
magnetism of the solar chromosphere. We performed a supporting study in
Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we
concluded that is one of the best candidates because it is sensitive to a large
range of atmospheric heights, from the photosphere to the middle chromosphere.
However, we believe that it is worth to try improving the results produced by
this line observing additional spectral lines. In that regard, we examined the
neighbour solar spectrum looking for spectral lines that could increase the
sensitivity to the atmospheric parameters. Interestingly, we discovered several
photospheric lines that greatly improve the photospheric sensitivity to the
magnetic field vector. Moreover, they are located close to a second
chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca
II 8498 A line, and enhances the sensitivity to the atmospheric parameters at
chromospheric layers. We conclude that the lines in the vicinity of the Ca II
8542 A line not only increase its sensitivity to the atmospheric parameters at
all layers, but also they constitute an excellent spectral window for
chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl
- …