119 research outputs found

    Microbial conversion of major ginsenoside Rb1 to minor ginsenoside Rd by Indian fermented food bacteria

    Get PDF
    Ginsenoside Rb1 is the predominant secondary metabolite (saponin) in Panax ginseng. Hydrolysis of the sugar residues in Rb1 yields more pharmaceutically active ginsenosides like Rd, Rg3, F2, Rh2 andC-K. Among them, the minor ginsenoside Rd enhances the differentiation of neural stem cells, protects neurons from neurotoxic chemicals, decreases urea nitrogen and creatinine in kidney. It also protects the kidney from apoptosis and DNA fragmentation caused by cancer and chemical drugs and is more useful therapeutically than the major ginsenoside Rb1. Bacteria showing b-glucosidase activity were isolated from fermented Indian food using esculin-MRS agar. Bacteria from Amla in sugar syrup and Boiled Amla in jaggery syrup converted ginsenoside Rb1 to minor ginsenoside Rd. TLC and HPLC analysis showed that with increase in incubation time the conversion of Rb1 to Rd also increased. The 16s rDNA sequence was determined and the bacteria showed 93% sequence similarity to Brumimicrobium mesophilum

    Controls of soil spatial variability in a dry tropical forest

    Get PDF
    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (= 1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3--N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief

    Stunting and Marginalisation and Lack of Resiliency

    Get PDF
    Abstract Malnutrition across the world is a global issue but in the developing countries it is catastrophic. Poverty affects nutrition and nutrition affects poverty, while income poverty is important to nutrition it is not strongly correlated, it is here we begin this interdisciplinary dialogue on a growing phenomenon in Asia called stunting. Stunting or chronic under nutrition, resulting in growth retardation is indicated by height for-age. Nearly 40 percent of the children in SAARC countries are engulfed in poor conditions for growth and development. Clinical etiology suggests that lack of nutrition, presence of infection and lack of motherinfant interaction insufficient food supply both in quantity and quality and recurrence of infectious diseases results in stunting or chronic under nutrition. Stunting, as a manifestation of deprivation in early childhood, is a common problem among young children. We suggest that poverty and lack of resources may predispose a child to maladjustment in the grown-up society, lacking in resiliency. This paper examines the relationship between poverty, marginalization and health in the context of stunting, under weight and wasting among children and malnutrition among women and adolescent girls lacking in resilience

    Exploring the Anti-inflammatory and Anti-cancer compounds from the leaves of Acalypha indica

    Get PDF
    Abstract: Acalypha indica (Euphorbiaceae) is commonly known as Indian Copperleaf and India

    Prospective Exploratory Analysis of Angiogenic Biomarkers in Peripheral Blood in Advanced NSCLC Patients Treated With Bevacizumab Plus Chemotherapy: The ANGIOMET Study

    Get PDF
    Finding angiogenic prognostic markers in advanced non-small-cell lung cancer is still an unmet medical need. We explored a set of genetic variants in the VEGF-pathway as potential biomarkers to predict clinical outcomes of patients with non-small-cell lung cancer treated with chemotherapy plus bevacizumab. We prospectively analyzed the relationship between VEGF-pathway components with both pathological and prognostic variables in response to chemotherapy plus bevacizumab in 168 patients with non-squamous non-small-cell lung cancer. Circulating levels of VEGF and VEGFR2 and expression of specific endothelial surface markers and single-nucleotide polymorphisms in VEGF-pathway genes were analyzed. The primary clinical endpoint was progression-free survival. Secondary endpoints included overall survival and objective tumor response. VEGFR-1 rs9582036 variants AA/AC were associated with increased progression-free survival (p = 0.012 and p = 0.035, respectively), and with improved overall survival (p = 0.019) with respect to CC allele. Patients with VEGF-A rs3025039 harboring allele TT had also reduced mortality risk (p = 0.049) compared with the CC allele. The VEGF-A rs833061 variant was found to be related with response to treatment, with 61.1% of patients harboring the CC allele achieving partial treatment response. High pre-treatment circulating levels of VEGF-A were associated with shorter progression-free survival (p = 0.036). In conclusion, in this prospective study, genetic variants in VEGFR-1 and VEGF-A and plasma levels of VEGF-A were associated with clinical benefit, progression-free survival, or overall survival in a cohort of advanced non-squamous non-small-cell lung cancer patients receiving chemotherapy plus antiangiogenic therapy. © Copyright © 2021 Jantus-Lewintre, Massutí Sureda, González Larriba, Rodríguez-Abreu, Juan, Blasco, Dómine, Provencio Pulla, Garde, Álvarez, Maestu, Pérez de Carrión, Artal, Rolfo, de Castro, Guillot, Oramas, de las Peñas, Ferrera, Martínez, Serra, Rosell and Camps

    Polymorphisms in the BER and NER pathways and their influence on survival and toxicity in never-smokers with lung cancer

    Get PDF
    Polymorphisms in DNA repair pathways may play a relevant role in lung cancer survival in never-smokers. Furthermore, they could be implicated in the response to chemotherapy and toxicity of platinum agents. The aim of this study was to evaluate the influence of various genetic polymorphisms in the BER and NER DNA repair pathways on survival and toxicity in never-smoker LC patients. The study included never-smokers LC cases diagnosed from 2011 through 2019, belonging to the Lung Cancer Research In Never Smokers study. A total of 356 never-smokers cases participated (79% women; 83% adenocarcinoma and 65% stage IV). Survival at 3 and 5 years from diagnosis was not associated with genetic polymorphisms, except in the subgroup of patients who received radiotherapy or chemo-radiotherapy, and presented with ERCC1 rs3212986 polymorphism. There was greater toxicity in those presenting OGG1 rs1052133 (CG) and ERCC1 rs11615 polymorphisms among patients treated with radiotherapy or chemo-radiotherapy, respectively. In general, polymorphisms in the BER and NER pathways do not seem to play a relevant role in survival and response to treatment among never-smoker LC patients

    Energy scavenging from insect flight

    Full text link
    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (C otinis nitida ) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d 31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm 3 , respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5–22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90804/1/0960-1317_21_9_095016.pd
    corecore