5 research outputs found

    Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations

    Get PDF
    OBJECTIVE: To explore the prognostic value of initial clinical and mutational findings in infants with SCN1A mutations. METHODS: Combining sex, age/fever at first seizure, family history of epilepsy, EEG, and mutation type, we analyzed the accuracy of significant associations in predicting Dravet syndrome vs milder outcomes in 182 mutation carriers ascertained after seizure onset. To assess the diagnostic accuracy of all parameters, we calculated sensitivity, specificity, receiver operating characteristic (ROC) curves, diagnostic odds ratios, and positive and negative predictive values and the accuracy of combined information. We also included in the study demographic and mutational data of the healthy relatives of mutation carrier patients. RESULTS: Ninety-seven individuals (48.5%) had Dravet syndrome, 49 (23.8%) had generalized/genetic epilepsy with febrile seizures plus, 30 (14.8%) had febrile seizures, 6 (3.5%) had focal epilepsy, and 18 (8.9%) were healthy relatives. The association study indicated that age at first seizure and frameshift mutations were associated with Dravet syndrome. The risk of Dravet syndrome was 85% in the 0- to 6-month group, 51% in the 6- to 12-month range, and 0% after the 12th month. ROC analysis identified onset within the sixth month as the diagnostic cutoff for progression to Dravet syndrome (sensitivity = 83.3%, specificity = 76.6%). CONCLUSIONS: In individuals with SCN1A mutations, age at seizure onset appears to predict outcome better than mutation type. Because outcome is not predetermined by genetic factors only, early recognition and treatment that mitigates prolonged/repeated seizures in the first year of life might also limit the progression to epileptic encephalopathy

    Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes

    Get PDF
    Targeted resequencing gene panels are used in the diagnostic setting to identify gene defects in epilepsy. We performed targeted resequencing using a 30-genes panel and a 95-genes panel in 349 patients with drug-resistant epilepsies beginning in the first years of life. We identified 71 pathogenic variants, 42 of which novel, in 30 genes, corresponding to 20.3% of the probands. In 66% of mutation positive patients, epilepsy onset occurred before the age of 6 months. The 95-genes panel allowed a genetic diagnosis in 22 (6.3%) patients that would have otherwise been missed using the 30-gene panel. About 50% of mutations were identified in genes coding for sodium and potassium channel components. SCN2A was the most frequently mutated gene followed by SCN1A, KCNQ2, STXBP1, SCN8A, CDKL5, and MECP2. Twenty-nine mutations were identified in 23 additional genes, most of them recently associated with epilepsy. Our data show that panels targeting about 100 genes represent the best cost-effective diagnostic option in pediatric drug-resistant epilepsies. They enable molecular diagnosis of atypical phenotypes, allowing to broaden phenotype-genotype correlations. Molecular diagnosis might influence patients' management and translate into better and specific treatment recommendations in some conditions

    Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations

    No full text
    The purpose of the study is to explore the causative role of TUBB2B gene mutations in patients with different malformations of cortical development. We collected and evaluated clinical and MRI data of a cohort of 128 consecutive patients (61 females and 67 males) in whom brain MRI had detected a spectrum of malformations of cortical development including polymicrogyria or pachygyria, who were mutation-negative to other possible causative genes. Mutation analysis of the TUBB2B gene was performed. We identified three new TUBB2B mutations in three unrelated patients (3 out of 128; 2.3%) with a diffuse and rather symmetrical cortical abnormality, including diffuse polymicrogyria in two and bilateral regional pachygyria in one. One patient harbored a p.Asp417Asn amino-acid substitution in the C-terminal domain of the protein; one patient a p.Asn256Ser amino-acid substitution in the intermediate domain and one patient a p.Leu117Pro amino-acid substitution in the N-terminal domain. The localization of each mutation within the secondary structure of the β2-tubulin polypeptide suggests that these mutations might alter the proper functions of microtubules. The phenotypic spectrum associated with TUBB2B mutations is wider than previously reported and includes diffuse, symmetric malformations of cortical developme

    Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations

    No full text
    Objective: To explore the prognostic value of initial clinical and mutational findings in infants with SCN1A mutations. Methods: Combining sex, age/fever at first seizure, family history of epilepsy, EEG, and mutation type, we analyzed the accuracy of significant associations in predicting Dravet syndrome vs milder outcomes in 182 mutation carriers ascertained after seizure onset. To assess the diagnostic accuracy of all parameters, we calculated sensitivity, specificity, receiver operating characteristic (ROC) curves, diagnostic odds ratios, and positive and negative predictive values and the accuracy of combined information. We also included in the study demographic and mutational data of the healthy relatives of mutation carrier patients. Results: Ninety-seven individuals (48.5%) had Dravet syndrome, 49 (23.8%) had generalized/ genetic epilepsy with febrile seizures plus, 30 (14.8%) had febrile seizures, 6 (3.5%) had focal epilepsy, and 18 (8.9%) were healthy relatives. The association study indicated that age at first seizure and frameshift mutations were associated with Dravet syndrome. The risk of Dravet syndrome was 85%in the 0- to 6-month group, 51%in the 6- to 12-month range, and 0% after the 12th month. ROC analysis identified onset within the sixth month as the diagnostic cutoff for progression to Dravet syndrome (sensitivity 5 83.3%, specificity 5 76.6%). Conclusions: In individuals with SCN1A mutations, age at seizure onset appears to predict outcome better than mutation type. Because outcome is not predetermined by genetic factors only, early recognition and treatment that mitigates prolonged/repeated seizures in the first year of life might also limit the progression to epileptic encephalopathy
    corecore