90 research outputs found

    Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis

    Get PDF
    Arterial stiffness may be a cause of cerebral small vessel disease and cognitive impairment. We therefore performed a systematic review and meta-analysis of studies on the association between stiffness, cerebral small vessel disease and cognitive impairment. For the associations between stiffness (i.e. carotid-femoral pulse wave velocity (cfPWV), brachial-ankle PVVV (baPWV), carotid stiffness and pulse pressure) on the one hand and cerebral small vessel disease and cognitive impairment on the other, we identified 23 (n = 15,666/20 cross-sectional; 1 longitudinal; 2 combined cross-sectional/longitudinal) and 41 studies (n= 57,671/26 cross-sectional; 11 longitudinal; 4 combined cross-sectional/longitudinal), respectively. Pooled analyses of cross-sectional studies showed that greater stiffness was associated with markers of cerebral small vessel disease with odds ratios, per +1 SD, of 1.29-1.32 (

    Interrelated modulation of endothelial function in Behcet's disease by clinical activity and corticosteroid treatment

    Get PDF
    Corticosteroids are commonly used in empirical treatment of Behçet's disease (BD), a systemic inflammatory condition associated with reversible endothelial dysfunction. In the present study we aimed to dissect the effects of clinical disease activity and chronic or short-term corticosteroid treatment on endothelial function in patients with BD. In a case-control, cross-sectional study, we assessed endothelial function by endothelium dependent flow mediated dilatation (FMD) at the brachial artery of 87 patients, who either were or were not receiving chronic corticosteroid treatment, and exhibiting variable clinical disease activity. Healthy individuals matched for age and sex served as controls. Endothelial function was also assessed in a prospective study of 11 patients before and after 7 days of treatment with prednisolone given at disease relapse (20 mg/day). In the cross-sectional component of the study, FMD was lower in patients than in control individuals (mean ± standard error: 4.1 ± 0.4% versus 5.7 ± 0.2%, P = 0.003), whereas there was a significant interaction between the effects of corticosteroids and disease activity on endothelial function (P = 0.014, two-factor analysis of variance). Among patients with inactive BD, those who were not treated with corticosteroids (n = 33) had FMD comparable to that in healthy control individuals, whereas those treated with corticosteroids (n = 15) had impaired endothelial function (P = 0.023 versus the respective control subgroup). In contrast, among patients with active BD, those who were not treated with corticosteroids (n = 20) had lower FMD than control individuals (P = 0.007), but in those who were receiving corticosteroids (n = 19) the FMD values were comparable to those in control individuals. Moreover, FMD was significantly improved after 7 days of prednisolone administration (3.7 ± 0.9% versus 7.6 ± 1.4%, P = 0.027). Taken together, these results imply that although corticosteroid treatment may impair endothelial function per se during the remission phase of the inflammatory process, it restores endothelial dysfunction during active BD by counteracting the harmful effects of relapsing inflammation

    Twenty-Four-Hour Central (Aortic) Systolic Blood Pressure: Reference Values and Dipping Patterns in Untreated Individuals.

    Get PDF
    Central (aortic) systolic blood pressure (cSBP) is the pressure seen by the heart, the brain, and the kidneys. If properly measured, cSBP is closer associated with hypertension-mediated organ damage and prognosis, as compared with brachial SBP (bSBP). We investigated 24-hour profiles of bSBP and cSBP, measured simultaneously using Mobilograph devices, in 2423 untreated adults (1275 women; age, 18-94 years), free from overt cardiovascular disease, aiming to develop reference values and to analyze daytime-nighttime variability. Central SBP was assessed, using brachial waveforms, calibrated with mean arterial pressure (MAP)/diastolic BP (cSBPMAP/DBPcal), or bSBP/diastolic blood pressure (cSBPSBP/DBPcal), and a validated transfer function, resulting in 144 509 valid brachial and 130 804 valid central measurements. Averaged 24-hour, daytime, and nighttime brachial BP across all individuals was 124/79, 126/81, and 116/72 mm Hg, respectively. Averaged 24-hour, daytime, and nighttime values for cSBPMAP/DBPcal were 128, 128, and 125 mm Hg and 115, 117, and 107 mm Hg for cSBPSBP/DBPcal, respectively. We pragmatically propose as upper normal limit for 24-hour cSBPMAP/DBPcal 135 mm Hg and for 24-hour cSBPSBP/DBPcal 120 mm Hg. bSBP dipping (nighttime-daytime/daytime SBP) was -10.6 % in young participants and decreased with increasing age. Central SBPSBP/DBPcal dipping was less pronounced (-8.7% in young participants). In contrast, cSBPMAP/DBPcal dipping was completely absent in the youngest age group and less pronounced in all other participants. These data may serve for comparison in various diseases and have potential implications for refining hypertension diagnosis and management. The different dipping behavior of bSBP versus cSBP requires further investigation
    corecore