474 research outputs found

    Energy resolution of terahertz single-photon-sensitive bolometric detectors

    Get PDF
    We report measurements of the energy resolution of ultra-sensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 terahertz, near the predicted value due to intrinsic thermal fluctuation noise.Comment: 11 pages (double-spaced), 5 figures; minor revision

    Two-dimensional XY spin/gauge glasses on periodic and quasiperiodic lattices

    Full text link
    Via Monte Carlo studies of the frustrated XY or classical planar model we demonstrate the possibility of a finite (nonzero) temperature spin/gauge glass phase in two dimensions. Examples of both periodic and quasiperiodic two dimensional lattices, where a high temperature paramagnetic phase changes to a spin/gauge glass phase with the lowering of temperature, are presented. The existence of the spin/gauge glass phase is substantiated by our study of the temperature dependence of the Edwards-Anderson order parameter, spin glass susceptibility, linear susceptibility and the specific heat. Finite size scaling analysis of spin glass susceptibility and order parameter yields a nonzero critical temperature and exponents that are in close agreement with those obtained by Bhatt and Young in their random ±J{\pm J} Ising model study on a square lattice. These results suggest that certain periodic and quasiperiodic two-dimensional arrays of superconducting grains in suitably chosen transverse magnetic fields should behave as superconducting glasses at low temperatures.Comment: RevTex, 25 pages. 11 epsf figures available upon request ([email protected] or [email protected]). Submitted to Phys. Rev.

    Spin glass behavior of frustrated 2-D Penrose lattice in the classical planar model

    Full text link
    Via extensive Monte Carlo studies we show that the frustrated XY Hamiltonian on a 2-D Penrose lattice admits of a spin glass phase at low temperature. Studies of the Edwards-Anderson order parameter, spin glass susceptibility, and local (linear) susceptibility point unequivocally to a paramagnetic to spin glass transition as the temperature is lowered. Specific heat shows a rounded peak at a temperature above the spin glass transition temperature, as is commonly observed in spin glasses. Our results strongly suggest that the critical point exponents are the same as obtained by Bhatt and Young in the ±J{\pm}J Ising model on a square lattice. However, unlike in the latter case, the critical temperature is clearly finite (nonzero). The results imply that a quasiperiodic 2-D array of superconducting grains in a suitably chosen transverse magnetic field should behave as a superconducting glass at low temperature.Comment: RevTex, 4 pages Including 4 figures. To appear in the June 1 1996 issue of Phys. Rev. B (Rapid Communications). Revised/replaced edition contains an erratum at the end of the paper, also to appear in Phys. Rev.

    Phase preserving amplification near the quantum limit with a Josephson Ring Modulator

    Full text link
    Recent progress in solid state quantum information processing has stimulated the search for ultra-low-noise amplifiers and frequency converters in the microwave frequency range, which could attain the ultimate limit imposed by quantum mechanics. In this article, we report the first realization of an intrinsically phase-preserving, non-degenerate superconducting parametric amplifier, a so far missing component. It is based on the Josephson ring modulator, which consists of four junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we also show that our device operates within a factor of three of the quantum limit. This development opens new applications in the area of quantum analog signal processing

    A superconducting-nanowire 3-terminal electronic device

    Full text link
    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors

    Bioclimatic transect networks: powerful observatories of ecological change

    Get PDF
    First published: 19 May 2017Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.Stefan Caddy-Retalic, Alan N. Andersen, Michael J. Aspinwall, Martin F. Breed, Margaret Byrne, Matthew J. Christmas, Ning Dong, Bradley J. Evans, Damien A. Fordham, Greg R. Guerin, Ary A. Hoffmann, Alice C. Hughes, Stephen J. van Leeuwen, Francesca A. McInerney, Suzanne M. Prober, Maurizio Rossetto, Paul D. Rymer, Dorothy A. Steane, Glenda M. Wardle, Andrew J. Low

    Muon-Spin Rotation Measurements of the Magnetic Field Dependence of the Vortex-Core Radius and Magnetic Penetration Depth in NbSe2

    Full text link
    Muon-spin rotation spectroscopy has been used to measure the internal magnetic field distribution in NbSe2 for Hc1 << H < 0.25 Hc2. The deduced profiles of the supercurrent density indicate that the vortex-core radius in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which the core radius depends on the intervortex spacing is used to model this behaviour. In addition, we find for the first time that the in-plane magnetic penetration depth increases linearly with H in the vortex state of a conventional superconductor.Comment: 4 pages, RevTeX, 4 encapsulated postscript figures, (to appear in Phys. Rev. Lett. 25Aug97 issue

    Electron-Assisted Hopping in Two Dimensions

    Full text link
    We have studied the non-ohmic effects in the conductivity of a two-dimensional system which undergoes the crossover from weak to strong localization with decreasing electron concentration. When the electrons are removed from equilibrium with phonons, the hopping conductivity depends only on the electron temperature. This indicates that the hopping transport in a system with a large localization length is assisted by electron-electron interactions rather than by the phonons.Comment: 5 pages, 4 figure

    Dynamics and Energy Distribution of Non-Equilibrium Quasiparticles in Superconducting Tunnel Junctions

    Full text link
    We present a full theoretical and experimental study of the dynamics and energy distribution of non-equilibrium quasiparticles in superconducting tunnel junctions (STJs). STJs are often used for single-photon spectrometers, where the numbers of quasiparticles excited by a photon provide a measure of the photon energy. The magnitude and fluctuations of the signal current in STJ detectors are in large part determined by the quasiparticle dynamics and energy distribution during the detection process. We use this as motivation to study the transport and energy distribution of non-equilibrium quasiparticles excited by x-ray photons in a lateral, imaging junction configuration. We present a full numerical model for the tunneling current of the major physical processes which determine the signal. We find that a diffusion framework models the quasiparticle dynamics well and that excited quasiparticles do not equilibrate to the lattice temperature during the timescales for tunneling. We extract physical timescales from the measured data, make comparisons with existing theories, and comment on implications for superconducting mesoscopic systems and single-photon detectors.Comment: 25 pages text, 15 figure
    • …
    corecore