2,867 research outputs found
The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity
We present Chandra X-ray Observatory and Submillimeter Array (SMA) imaging of
HBC 515, a system consisting of multiple young stellar objects (YSOs). The five
members of HBC 515 represent a remarkably diverse array of YSOs, ranging from
the low-mass Class I/II protostar HBC 515B, through Class II and transition
disk objects (HBC 515D and C, respectively), to the "diskless", intermediate-
mass, pre-main sequence binary HBC 515A. Our Chandra/ACIS imaging establishes
that all five components are X-ray sources, with HBC 515A - a
subarcsecond-separation binary that is partially resolved by Chandra - being
the dominant X-ray source. We detect an X-ray flare associated with HBC 515B.
In the SMA imaging, HBC 515B is detected as a strong 1.3 mm continuum emission
source; a second, weaker mm continuum source is coincident with the position of
the transition disk object HBC 515C. These results strongly support the
protostellar nature of HBC 515B, and firmly establish HBC 515A as a member of
the rare class of relatively massive, X-ray luminous "weak-lined T Tauri stars"
that are binaries and have shed their disks at very early stages of pre-MS
evolution. The coexistence of two such disparate objects within a single,
presumably coeval multiple YSO system highlights the influence of pre- MS star
mass, binarity, and X-ray luminosity in regulating the lifetimes of
circumstellar, planet-forming disks and the timescales of star-disk
interactions.Comment: Accepted for publication in A&A; 11 pages, 5 figure
The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori
We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) observations
of V883 Ori, an FU Ori object. We describe the molecular outflow and envelope
of the system based on the CO and CO emissions, which together
trace a bipolar molecular outflow. The CO emission traces the rotational
motion of the circumstellar disk. From the CO blue-shifted emission, we
estimate a wide opening angle of 150 for the outflow
cavities. Also, we find that the outflow is very slow (characteristic velocity
of only 0.65 km~s), which is unique for an FU Ori object. We calculate
the kinematic properties of the outflow in the standard manner using the
CO and CO emissions. In addition, we present a P Cygni profile
observed in the high-resolution optical spectrum, evidence of a wind driven by
the accretion and being the cause for the particular morphology of the
outflows. We discuss the implications of our findings and the rise of these
slow outflows during and/or after the formation of a rotationally supported
disk.Comment: 12 pages, 7 figures, 2 tables. Accepte
Molecules in the transition disk orbiting T Cha
We seek to establish the presence and properties of gas in the circumstellar
disk orbiting T Cha, a nearby (d~110 pc), relatively evolved (age ~5-7 Myr) yet
actively accreting 1.5 Msun T Tauri star. We used the APEX 12 m radiotelescope
to search for submillimeter molecular emission from the T Cha disk, and we
reanalyzed archival XMM-Newton spectroscopy of T Cha to ascertain the
intervening absorption due to disk gas along the line of sight to the star
(N_H). We detected submillimeter rotational transitions of 12CO, 13CO, HCN, CN
and HCO+ from the T Cha disk. The 12CO line appears to display a double-peaked
line profile indicative of Keplerian rotation. Analysis of the CO emission line
data indicates that the disk around T Cha has a mass (M_disk,H_2 = 80 M_earth)
similar to, but more compact (R_disk, CO~80 AU) than, other nearby, evolved
molecular disks (e.g. V4046 Sgr, TW Hya, MP Mus) in which cold molecular gas
has been previously detected. The HCO+/13CO and HCN/13CO, line ratios measured
for T Cha appear similar to those of other evolved circumstellar disks (i.e. TW
Hya and V4046 Sgr), while the CN/13CO ratio appears somewhat weaker. Analysis
of the XMM-Newton data shows that the atomic absorption toward T Cha is
1-2 orders of magnitude larger than toward the other nearby T Tauri with
evolved disks. Furthermore, the ratio between atomic absorption and optical
extinction N_H/A_V toward T Cha is higher than the typical value observed for
the interstellar medium and young stellar objects in the Orion Nebula Cluster.
This may suggest that the fraction of metals in the disk gas is higher than in
the interstellar medium. Our results confirm that pre-main sequence stars older
than ~5 Myr, when accreting, retain cold molecular disks, and that those
relatively evolved disks display similar physical and chemical properties.Comment: Accepted for publication on A&
Measurement of Thermal Noise in Multilayer Coatings with Optimized Layer Thickness
A standard quarter-wavelength multilayer optical coating will produce the
highest reflectivity for a given number of coating layers, but in general it
will not yield the lowest thermal noise for a prescribed reflectivity. Coatings
with the layer thicknesses optimized to minimize thermal noise could be useful
in future generation interferometric gravitational wave detectors where coating
thermal noise is expected to limit the sensitivity of the instrument. We
present the results of direct measurements of the thermal noise of a standard
quarter-wavelength coating and a low noise optimized coating. The measurements
indicate a reduction in thermal noise in line with modeling predictions.Comment: 8 pages, 14 figure
A Chemical Map of the Outbursting V883 Ori system: Vertical and Radial Structures
We present the first results of a pilot program to conduct an Atacama Large
Millimeter/submillimeter Array (ALMA) Band 6 (211-275 GHz) spectral line study
of young stellar objects (YSO) that are undergoing rapid accretion episodes,
i.e. FU Ori objects (FUors). Here, we report on molecular emission line
observations of the FUor system, V883 Ori. In order to image the FUor object
with full coverage from ~0.5 arcsec to the map size of ~30 arcsec, i.e. from
disc to outflow scales, we combine the ALMA main array (the 12-m array) with
the Atacama Compact Array (7-m array) and the total power (TP) array. We detect
HCN, HCO, CHOH, SO, DCN, and HCO emissions with most of these
lines displaying complex kinematics. From PV diagrams, the detected molecules
HCN, HCO, CHOH, DCN, SO, and HCO probe a Keplerian rotating
disc in a direction perpendicular to the large-scale outflow detected
previously with the CO and CO lines. Additionally, HCN and
HCO reveal kinematic signatures of infall motion. The north outflow is
seen in HCO, HCO, and SO emissions. Interestingly, HCO
emission reveals a pronounced inner depression or "hole" with a size comparable
to the radial extension estimated for the CHOH and 230 GHz continuum. The
inner depression in the integrated HCO intensity distribution of V883 Ori
is most likely the result of optical depth effects, wherein the optically thick
nature of the HCO and continuum emission towards the innermost parts of
V883 Ori can result in a continuum subtraction artifact in the final HCO
flux level
Scaling in a continuous time model for biological aging
In this paper we consider a generalization to the asexual version of the
Penna model for biological aging, where we take a continuous time limit. The
genotype associated to each individual is an interval of real numbers over
which Dirac --functions are defined, representing genetically
programmed diseases to be switched on at defined ages of the individual life.
We discuss two different continuous limits for the evolution equation and two
different mutation protocols, to be implemented during reproduction. Exact
stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure
- …