139 research outputs found

    Mechanism and Kinetics of Catalyzed Chain Growth

    Get PDF

    Finding the Balance between Research and Monitoring: When Are Methods Good Enough to Understand Plastic Pollution?

    Get PDF
    Plastic pollution is an international environmental problem. Desire to act is shared from the public to policymakers, yet motivation and approaches are diverging. Public attention is directed to reducing plastic consumption, cleaning local environments, and engaging in citizen science initiatives. Policymakers and regulators are working on prevention and mitigation measures, while international, regional, and national bodies are defining monitoring recommendations. Research activities are focused on validating approaches to address goals and comparing methods. Policy and regulation are eager to act on plastic pollution, often asking questions researchers cannot answer with available methods. The purpose of monitoring will define which method is implemented. A clear and open dialogue between all actors is essential to facilitate communication on what is feasible with current methods, further research, and development needs. For example, some methods can already be used for international monitoring, yet limitations including target plastic types and sizes, sampling strategy, available infrastructure and analytical capacity, and harmonization of generated data remain. Time and resources to advance scientific understanding must be balanced against the need to answer pressing policy issues.publishedVersio

    Characterizing the multidimensionality of microplastics across environmental compartments

    Get PDF
    Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and mass characteristics of >60 000 individual microplastic particles as continuous distributions. Particles originate from samples taken from different aquatic compartments, including surface water and sediments from the marine and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-of-the-art FTIR- imaging, using the same automated imaging post-processing software. We introduce a workflow with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. We find that probability density functions (PDFs) for particle length follow power law distributions, with median slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the assessment of microplastic risks

    Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis

    Get PDF
    Microplastics (MP) are ubiquitous within the environment, but the analysis of this contaminant is currently quite diverse, and a number of analytical methods are available. The comparability of results is hindered as even for a single analytical method such as Fourier transform infrared spectroscopy (FT-IR) the different instruments currently available do not allow a harmonized analysis. To overcome this limitation, a new free of charge software tool, allowing the systematic identification of MP in the environment (siMPle) was developed. This software tool allows a rapid and harmonized analysis of MP across FT-IR systems from different manufacturers (Bruker Hyperion 3000, Agilent Cary 620/670, PerkinElmer Spotlight 400, Thermo Fischer Scientific Nicolet iN10). Using the same database and the automated analysis pipeline (AAP) in siMPle, MP were identified in samples that were analyzed with instruments with different detector systems and optical resolutions, the results of which are discussed

    Comparison of two rapid automated analysis tools for large FTIR microplastic datasets

    Get PDF
    AbstractOne of the biggest issues in microplastic (MP, plastic items  &lt;5 mm) research is the lack of standardisation and harmonisation in all fields, reaching from sampling methodology to sample purification, analytical methods and data analysis. This hampers comparability as well as reproducibility among studies. Concerning chemical analysis of MPs, Fourier-transform infrared (FTIR) spectroscocopy is one of the most powerful tools. Here, focal plane array (FPA) based micro-FTIR (µFTIR) imaging allows for rapid measurement and identification without manual preselection of putative MP and therefore enables large sample throughputs with high spatial resolution. The resulting huge datasets necessitate automated algorithms for data analysis in a reasonable time frame. Although solutions are available, little is known about the comparability or the level of reliability of their output. For the first time, within our study, we compare two well-established and frequently applied data analysis algorithms in regard to results in abundance, polymer composition and size distributions of MP (11–500 µm) derived from selected environmental water samples: (a) the siMPle analysis tool (systematic identification of MicroPlastics in the environment) in combination with MPAPP (MicroPlastic Automated Particle/fibre analysis Pipeline) and (b) the BPF (Bayreuth Particle Finder). The results of our comparison show an overall good accordance but also indicate discrepancies concerning certain polymer types/clusters as well as the smallest MP size classes. Our study further demonstrates that a detailed comparison of MP algorithms is an essential prerequisite for a better comparability of MP data.</jats:p

    Identifying microplastics in North Sea waters - A matter of extraction and detection

    Get PDF
    In times of a rising plastic production the occurrence of microplastics (< 5 mm in size) in the marine environment has been identified as an emerging topic of global concern. Microplastics are omnipresent in our environment, hardly degradable and are easily ingested by a wide range of organisms throughout all trophic levels. However, the extent of this microplastic pollution as well as the resulting impacts on the marine environment remains largely unknown. Therefore, standardized and reliable methods to securely detect microplastics are urgently needed. The conclusive identification requires a successful extraction from different, complex environmental matrices. Thus we developed a highly promising procedure to successfully analyze also small microplastics (11-500 µm) isolated from surface water samples. This procedure includes the usage of an enzymatic-oxidative purification in newly developed semi-enclosed filtration units (microplastic reactors). This is followed by a state-of-the-art analysis via micro Fourier transform infrared (µFTIR) spectroscopy. The aim of this work is to contribute to the field of microplastic research by applying innovative analysis techniques as well as generating solid and comparable data. These provide information on quantities, polymer and size composition as well as spatial distribution of microplastics in North Sea surface waters. First results show that microplastics are present in the North Sea exhibiting a variety of polymer types, dominated by rubbers and polyethylene. Concerning the size, the vast majority of the detected microplastic particles is less than 75 µm in length

    White and wonderful? Microplastics prevail in snow from the Alps to the Arctic

    Get PDF
    Microplastics (MPs) are ubiquitous, and considerable quantities prevail even in the Arctic; however, there are large knowledge gaps regarding pathways to the North. To assess whether atmospheric transport plays a role, we analyzed snow samples from ice floes in Fram Strait. For comparison, we investigated snow samples from remote (Swiss Alps) and populated (Bremen, Bavaria) European sites. MPs were identified by Fourier transform infrared imaging in 20 of 21 samples. The MP concentration of Arctic snow was significantly lower (0 to 14.4 × 103 N liter−1) than European snow (0.19 × 103 to 154 × 103 N liter−1) but still substantial. Polymer composition varied strongly, but varnish, rubber, polyethylene, and polyamide dominated overall. Most particles were in the smallest size range indicating large numbers of particles below the detection limit of 11 μm. Our data highlight that atmospheric transport and deposition can be notable pathways for MPs meriting more research

    No evidence of microplastic ingestion in emperor penguin chicks (Aptenodytes forsteri) from the Atka Bay colony (Dronning Maud Land, Antarctica)

    Get PDF
    Microplastic (500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region

    Monitoring of microplastic pollution in the Arctic: Recent developments in polymer identification, quality assurance and control (QA/QC), and data reporting

    Get PDF
    The pollution of the environment with plastics is of growing concern worldwide, including the Arctic region. While larger plastic pieces are a visible pollution issue, smaller microplastics are not visible with the naked eye. These particles are available for interaction by Arctic biota and have become a concern for animal and human health. The determination of microplastic properties includes several methodological steps, i.e. sampling, extraction, quantification and chemical identification. This review discusses suitable analytical tools for the identification, quantification and characterization of microplastics in the context of monitoring in the Arctic. It further addresses quality assurance and quality control (QA/QC) which is particularly important for the determination of microplastic in the Arctic, as both contamination and analyte losses can occur. It presents specific QA/QC measures for sampling procedures and for the handling of samples in the laboratory, either on land or on ship, and considering the small size of microplastics as well as the high risk of contamination. The review depicts which data should be mandatory to report, thereby supporting a framework for harmonized data reporting.publishedVersio
    corecore