31 research outputs found

    Human Blood Brain Barrier Disruption by Retroviral Infected Lymphocytes: Role of Myosin Light Chain Kinase in Endothelial Tight-Junction Disorganization

    No full text
    The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies

    Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms.

    No full text
    International audienceSerotonin (5-hydroxytryptamine; 5-HT) is able to activate the hypothalamo-pituitary-adrenal axis via multiple actions at different levels. In the human adrenal gland, 5-HT, released by subcapsular mast cells, stimulates corticosteroid production through a paracrine mode of communication which involves 5-HT receptor type 4 (5-HT4) primarily located in zona glomerulosa. As a result, 5-HT is much more efficient to stimulate aldosterone secretion than cortisol release in vitro and administration of 5-HT4 receptor agonists to healthy individuals is followed by an increase in plasma aldosterone levels without any change in plasma cortisol concentrations. Interestingly, adrenocortical hyperplasias and tumors responsible for corticosteroid hypersecretion exhibit various cellular and molecular defects which tend to reinforce the intraadrenal serotonergic tone. These pathophysiological mechanisms, which are summarized in the present review, include an increase in adrenal 5-HT production and overexpression of 5-HT receptors in adrenal neoplastic tissues. Altogether, these data support the concept of adrenal serotonergic paracrinopathy and suggest that 5-HT and its receptors may constitute valuable targets for pharmacological treatments of primary adrenal diseases

    Abnormal vacuoles distinct from lysosomes in a mouse model of mucopolysaccharidosis type IIIB

    No full text
    International audienceProgressive accumulation of large intracellular vesicles is a hallmark of cell pathology in lysosomal storage diseases. Accumulating vesicles are commonly identified as crippled lysosomes engorged with incompletely digested materials resulting form the genetic defect. Our study of cortical neurons of the mouse model of mucopolysaccharidosis IIIB (Sanfilippo syndrome type B), a lysosomal storage disease with predominant neurological manifestations, showed efficient endocytosis, macro-autophagy and trafficking between endoplasmic reticulum and Golgi. Vesicles accumulating in these cells have a unique membrane phenotype associating the lysosomal marker LAMP1 with markers of the early secretory pathway, suggesting that they do not result from amplification of the pre-existing lysosomal compartment but rather arise from disease-related vesicular trafficking defects producing abnormal dead-end organelles related to but distinct from lysosomes. The generation and accumulation of abnormal vesicles unable to resolve could be a major cause of progressive intracellular storage in mucopolysaccharidosis IIIB neurons

    Bcl-2 and Bax modulate adenine nucleotide translocase activity

    No full text
    Bcl-2 is a prosurvival factor that reportedly prevents the nonspecific permeabilization of mitochondrial membranes, yet enhances specific ADP/ATP exchange by these organelles. Here, we show that Bcl-2 enhances the ADP/ATP exchange in proteoliposomes containing the purified adenine nucleotide translocase (ANT) in isolated mitochondria and mitoplasts, as well as in intact cells in which mitochondrial matrix ATP was monitored continuously using a specific luciferase-based assay system. Conversely, Bax, which displaces Bcl-2 from ANT in apoptotic cells, inhibits ADP/ATP exchange through a direct action on ANT. The Bax-mediated inhibition of ADP/ATP exchange can be separated from Bax-stimulated formation of nonspecific pores by ANT. Chemotherapy-induced apoptosis caused an inhibition of ANT activity, which preceded the loss of the mitochondrial transmembrane potential and could be prevented by overexpression of Bcl-2. These data are compatible with a model of mitochondrial apoptosis regulation in which ANT interacts with either Bax or Bcl-2, which both influence ANT function in opposing manners. Bcl-2 would maintain the translocase activity at high levels, whereas Bax would inhibit the translocase function of ANT

    Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity

    No full text
    Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, beta-glucan surface exposure during Aspergillus fumigatus germination activates an Atg5-dependent autophagy pathway termed LC3-associated phagocytosis (LAP), which promotes fungal killing. We found that LAP activation also requires the genetic, biochemical or biological (germination) removal of A. fumigatus cell wall melanin. The attenuated virulence of melanin-deficient A. fumigatus is restored in Atg5-deficient macrophages and in mice upon conditional inactivation of Atg5 in hematopoietic cells. Mechanistically, Aspergillus melanin inhibits NADPH oxidase-dependent activation of LAP by excluding the p22phox subunit from the phagosome. Thus, two events that occur concomitantly during germination of airborne fungi, surface exposure of PAMPs and melanin removal, are necessary for LAP activation and fungal killing. LAP blockade is a general property of melanin pigments, a finding with broad physiological implications
    corecore