848 research outputs found
Dark Matter Searches
According to our present knowledge the matter/energy budget of the universe consists of 74% dark energy, 22% dark matter and 4% ordinary (or so-called baryonic) matter. While the dark energy cannot be detected directly, searches for dark matter are performed with earth-bound and space-borne detection devices, assuming that the dark matter consists of weakly interacting massive particles, the so-called WIMPs. An overview of the present experimental situation is give
Cryogenic calorimeters in astro and particle physics
The development of cryogenic calorimeters was originally motivated by the
fact that very low energy thresholds and excellent energy resolutions can be
achieved by these devices. Cryogenic devices are widely used in double beta
decay experiments, in cosmological dark matter searches, in x-ray detection of
galactic and extragalactic objects as well as in cosmic background radiation
experiments. An overview of the latest developments is given.Comment: (28 pages, contribution to the VIII International Conference on
Calorimetry in High Energy Physics, 13-19 June 1999, Lisbon, Portugal
Nuclear recoil measurements in Superheated Superconducting Granule detectors
The response of Superheated Superconducting Granule (SSG) devices to nuclear
recoils has been explored by irradiating SSG detectors with a 70MeV neutron
beam. In the past we have tested Al SSG and more recently, measurements have
been performed with Sn and Zn detectors. The aim of the experiments was to test
the sensitivity of SSG detectors to recoil energies down to a few keV. In
this paper, the preliminary results of the neutron irradiation of a SSG
detector made of Sn granules 15-20m in diameter will be discussed. For the
first time, recoil energy thresholds of 1keV have been measured.Comment: 7pages in Latex format, Preprint Bu-He 93/6 (University of Berne,
Switzerland), four figures available upon request via
[email protected] or [email protected]
Stable quark stars beyond neutran stars : can they account for the missing matter ?
The structure of a spherically symmetric stable dark 'star' is discussed, at
zero temperature, containing 1) a core of quarks in the deconfined phase and
antileptons 2) a shell of hadrons in particular , , and
and leptons or antileptons and 3) a shell of hydrogen in the
superfluid phase. If the superfluid hydrogen phase goes over into the
electromagnetic plasma phase at densities well below one atom / ,
as is usually assumed, the hydrogen shell is insignificant for the mass and the
radius of the 'star'. These quantities are then determined approximatively :
mass = 1.8 solar masses and radius = 9.2 km. On the contrary if densities of
the order of one atom / do form a stable hydrogen superfluid
phase, we find a large range of possible masses from 1.8 to 375 solar masses.
The radii vary accordingly from 9 to 1200 km.Comment: 5 pages, 2 figures, contribution to Strange Quark Matter conference,
Frankfurt, Germany, Sept. 200
Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)
Besides the dedicated search for strangelets NA52 measures light
(anti)particle and (anti)nuclei production over a wide range of rapidity.
Compared to previous runs the statistics has been increased in the 1998 run by
more than one order of magnitude for negatively charged objects at different
spectrometer rigidities. Together with previous data taking at a rigidity of
-20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3
without centrality requirements. We measured nuclei and antinuclei
(p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter
range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei
are mainly produced via the coalescence mechanism. However the centrality
dependence of the antibaryon to baryon ratios show that antibaryons are
diminished due to annihilation and breakup reactions in the hadron dense
environment. The volume of the particle source extracted from coalescence
models agrees with results from pion interferometry for an expanding source.
The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide
with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference
on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept.
25-29, 200
Recommended from our members
A proposal for a preliminary beam survey in the 3.5 mrad beam
We propose to measure the yields of positive and negative pions, kaons, and nucleons at 200 GeV/c from several target materials in the 3.5 mrad beam of the Meson Laboratory
Superheating fields of superconductors: Asymptotic analysis and numerical results
The superheated Meissner state in type-I superconductors is studied both
analytically and numerically within the framework of Ginzburg-Landau theory.
Using the method of matched asymptotic expansions we have developed a
systematic expansion for the solutions of the Ginzburg-Landau equations in the
limit of small , and have determined the maximum superheating field
for the existence of the metastable, superheated Meissner state as
an expansion in powers of . Our numerical solutions of these
equations agree quite well with the asymptotic solutions for . The
same asymptotic methods are also used to study the stability of the solutions,
as well as a modified version of the Ginzburg-Landau equations which
incorporates nonlocal electrodynamics. Finally, we compare our numerical
results for the superheating field for large- against recent asymptotic
results for large-, and again find a close agreement. Our results
demonstrate the efficacy of the method of matched asymptotic expansions for
dealing with problems in inhomogeneous superconductivity involving boundary
layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.
Strangelet spectra from type II supernovae
We study in this work the fate of strangelets injected as a contamination in
the tail of a "strange matter-driven" supernova shock. A simple model for the
fragmentation and braking of the strangelets when they pass through the
expanding oxygen shell is presented and solved to understand the reprocessing
of this component. We find that the escaping spectrum is a scaled-down version
of the one injected at the base of the oxygen shell. The supernova source is
likely to produce low-energy particles of quite independently
of the initial conditions. However, it is difficult that ultrarrelativistic
strangelets (such as the hypothetical Centauro primaries) can have an origin in
those explosive events.Comment: RevTex file, 5 pp., no figure
High-speed analysis of nuclear emulsion films with the use of dry objective lenses
The extensive use of nuclear emulsions as precise tracking detectors in experimental physics has been made possible due to recent advances in the production of novel emulsion films and to the development of automatic scanning devices. The scanning speed of such systems has exceeded the level of 20 cm2 of emulsion surface per hour. High-speed automatic scanning systems, such as those developed by the OPERA Collaboration, are able to reconstruct particle tracks in nuclear emulsions with excellent accuracy. However, the high-magnification oil immersion objectives used in these systems assume deposition and removal of oil onto and from the emulsion films. This is a major technological obstacle in the automatization of the emulsion feeding to the microscope, as required for large scale use as in the case of the OPERA neutrino oscillation experiment. In order to overcome this problem, an innovative technique of nuclear emulsion films scanning with the use of dry objective lenses has been developed and successfully applied to the experiment
- …