8 research outputs found

    Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study

    Get PDF
    17 pages, 5 figures, 1 table, supporting information https://dx.doi.org/10.1002/2016PA003065The early Holocene sea surface temperature (SST) gradient across the subtropical front (STF) to the east of New Zealand was ~2°C (measured between core sites MD97-2121 and MD97-2120): considerably less than the ~6°C modern gradient between the two core sites. We document the surface ocean temperatures east and south of New Zealand during the early and middle Holocene, to test and expand upon this reconstruction. This new study samples a latitudinal transect of seven sediment cores from 37°S to 60°S in the southwest Pacific from subtropical waters north of New Zealand to polar waters in the Southern Ocean. Our compilation of SST proxies consists of 525 SST estimates from five different methods and includes 243 new data points. We confirm that an early Holocene warm peak in this region was mostly restricted to the area immediately south of the STF, which resulted in a lower temperature gradient across the STF than in modern times. However, there is no change in Holocene SST south of the polar front. Faunal assemblages suggest an early Holocene meridional expansion of fauna characteristic of the modern subtropical front in the Bounty Gyre. We suggest that such an expansion could be achieved by a reduced inflow of Subantarctic Surface Water into the Bounty Gyre. Results from a modern-analog matching platform called the Past Interpretation of Climate Tool (PICT) suggest that the early Holocene SST is most consistent with reduced westerly winds in the New Zealand sector of the Southern OceanFunding for this project was provided by the New Zealand Antarctic Research Institute (NZARI 2014-2), the GNS Global Change Through Time Programme project 5 (J.P., G.C., and G.S.), the NIWA Coasts and Oceans Physical Resources (COPR) sediment processes project (H.B., H.N., and L.N.), and A.M.L. was supported by the NIWA “Regional Climate Modeling” core funded project contract CACV1702Peer Reviewe

    Discrimination of pollen of New Zealand mānuka (Leptospermum scoparium agg.) and kānuka (Kunzea spp.) (Myrtaceae)

    No full text
    The very similar appearance of pollen of the New Zealand Myrtaceous taxa Leptospermum scoparium s.l. (mānuka) and Kunzea spp. (kānuka) has led palynologists to combine them in paleoecological and melissopalynological studies. This is unfortunate, as differentiation of these taxa would improve understanding of past ecological change and has potential to add value to the New Zealand honey industry, where mānuka honey attracts a premium price. Here, we examine in detail the pollen morphology of the 10 Kunzea species and a number of Leptospermum scoparium morphotypes collected from around New Zealand, using light microscopy, SEM, and Classifynder (an automated palynology system). Our results suggest that at a generic level the New Zealand Leptospermum and Kunzea pollen can be readily differentiated, but the differences between pollen from the morphotypes of Leptospermum or between the species of Kunzea are less discernible. While size is a determinant factor– equatorial diameter of Leptospermum scoparium pollen is 19.08 ± 1.28 μm, compared to 16.30 ± 0.95 μm for Kunzea spp.–other criteria such as surface texture and shape charac teristics are also diagnostic. A support vector machine set up to differentiate Leptospermum from Kunzea pollen using images captured by the Classifynder system had a prediction accuracy of ~95%. This study is a step towards future melissopalynological differentiation of mānuka honey using automated pollen image capture and classification approache

    Mid- to late Pliocene (3.3–2.6 Ma) global sea-level fluctuations recorded on a continental shelf transect, Whanganui Basin, New Zealand

    Get PDF
    We present a ∼900 m-thick, mid- (3.3–3.0 Ma) to late Pliocene (3.0–2.6 Ma), shallow-marine, cyclical sedimentary succession from Whanganui Basin, New Zealand that identifies paleobathymetric changes, during a warmer-than-present interval of Earth history, relevant to future climate change. Our approach applies lithofacies, sequence stratigraphy and benthic foraminiferal analyses to two continuously-cored drillholes integrated with new and existing outcrop studies. We construct a depositional model of orbitally-paced, global sea-level changes on a wave-graded continental shelf. Unlike many previous studies, these shelf sediments were not eroded during sea-level lowstands and thus provide the potential to reconstruct the full amplitude of glacial-interglacial sea-level change. Paleobathymetric interpretations are underpinned by analysis of extant benthic foraminiferal census data and a statistical correlation with the distribution of modern taxa. In general, water depths derived from foraminiferal Modern Analogue Technique (MAT), are consistent with variability recorded by lithofacies. The inferred sea-level cycles co-vary with a qualitative climate record reconstructed from a census of extant pollen and spores, and a modern temperature relationship. A high-resolution age model is established using magnetostratigraphy constrained by biostratigraphy, and the dating and correlation of tephra. This integrated chronostratigraphy allows the recognition of 23 individual sedimentary cycles, that are correlated across the paleo-shelf and a possible “one-to-one” relationship is made to deep-ocean benthic oxygen isotope (δ18O) records. In general water depth changes were paced by ∼20 kyr duration between 3.3 and 3.0 Ma, after which cycle duration is ∼40 kyr during the late Pliocene (3.0–2.6 Ma). This record provides a future opportunity to evaluate the amplitude and frequency of global, Pliocene glacio-eustatic sea-level change, independent of the global benthic δ18O record

    Platyrrhine Ecophylogenetics in Space and Time

    No full text

    Medulloblastoma, Primitive Neuroectodermal Tumors, and Pineal Tumors

    No full text

    References

    No full text
    corecore