1,083 research outputs found
Modeling of droplet breakup in a microfluidic T--shaped junction with a phase--field model
A phase--field method is applied to the modeling of flow and breakup of
droplets in a T--shaped junction in the hydrodynamic regime where capillary and
viscous stresses dominate over inertial forces, which is characteristic of
microfluidic devices. The transport equations are solved numerically in the
three--dimensional geometry, and the dependence of the droplet breakup on the
flow rates, surface tension and viscosities of the two components is
investigated in detail. The model reproduces quite accurately the phase diagram
observed in experiments performed with immiscible fluids. The critical
capillary number for droplet breakup depends on the viscosity contrast, with a
trend which is analogous to that observed for free isolated droplets in
hyperbolic flow
Recommended from our members
Diffusivities of Lysozyme in Aqueous-MgCl2 Solutions from Dynamic Light-Scattering Data: Effect of Protein and Salt Concentrations
Recommended from our members
Effect of Secondary Structure on the Potential of Mean Force for Poly-L-Lysine in the α-Helix and β-Sheet Conformations
Recommended from our members
Critical Properties of Polydisperse Fluid Mixtures froin an Equation of State
Recommended from our members
Equilibrium Swelling Properties of Weakly-Ionizable 2-Hydroxyethyl Methacrylate (HEMA)-Based Hydrogels
Densities and phase equilibria of hydrogen, propane and vegetable oil mixtures. Experimental data and thermodynamic modeling
Heterogeneous catalytic gas-liquid reactions are intensified when carried out in the homogenous fluid phase by means of a supercritical co-solvent. For instance, supercritical propane is used to enhance yield in the hydrogenation of vegetable oils. Besides phase equilibrium knowledge, volumetric information is also needed to elucidate kinetic mechanisms and design continuous supercritical reactors. In this work, we report new experimental PvT data of the reactive mixture H2+sunflower oil+propane using the isochoric method. In addition, the phase equilibria and PvT data are modeled with the GCA and RK-PR equations of state, respectively. The isochoric method not only provides PvT information under the reaction conditions, but also the reactive system compressibility, key variable to attain enhanced transport properties in the supercritical reactors.Fil: Hegel, Pablo Ezequiel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Planta Piloto de IngenierĂa QuĂmica. Universidad Nacional del Sur. Planta Piloto de IngenierĂa QuĂmica; ArgentinaFil: Cotabarren, Natalia Soledad. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Planta Piloto de IngenierĂa QuĂmica. Universidad Nacional del Sur. Planta Piloto de IngenierĂa QuĂmica; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Planta Piloto de IngenierĂa QuĂmica. Universidad Nacional del Sur. Planta Piloto de IngenierĂa QuĂmica; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Planta Piloto de IngenierĂa QuĂmica. Universidad Nacional del Sur. Planta Piloto de IngenierĂa QuĂmica; Argentina. University of KwaZulu-Natal; Sudáfric
Recommended from our members
Osmotic Pressures and Second Virial Coefficients for Aqueous Saline Solutions of Lysozyme
- …