73 research outputs found

    Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses

    Get PDF
    Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 µg·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 µm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections

    Prevention of biofilm accumulation on a light-activated antimicrobial catheter material

    Get PDF
    The colonization of catheters by microorganisms is a serious problem that can lead to the development of resistant biofilm-related infections. Lethal photosensitisation is a possible solution as it is capable of inactivating microorganisms through the generation of reactive oxygen species. Previously we have shown that a Methylene Blue and gold nanoparticle-embedded silicone material has antimicrobial properties against planktonic bacteria when exposed to laser light. In this work the material has been tested for its ability to reduce the formation of Staphylococcus epidermidis biofilms. Biofilm formation was observed over time using a flow cell which was arranged to allow laser irradiation in situ. The duration and frequency of light exposure were changed so that the same amount of energy was delivered during each experiment. Neither short (5 min) but frequent (every 30 min) irradiation nor long (20 min) and infrequent (every 120 min) exposure was able to significantly prevent biofilm formation; they resulted in 75% and 60%, respectively, of the surface covered by the biofilm after 6 hour of colonization compared to 100% coverage when no laser was used. However, when laser irradiation was performed for 10 min every 60 min, a reduction in biofilm coverage of greater than 50% was observed compared to untreated silicone. The properties of the materials post-irradiation were also evaluated; the surface roughness of the material, the asperity density and the asperity height showed a continuous decrease with energy dose. However, the elasticity (Young's module) was not affected by the irradiation. This appears to be a promising novel light-activated material which, as well as displaying antimicrobial activity, has been shown for the first time capable of reducing biofilm formation over time

    In Vitro Assessment of Shiitake Mushroom (Lentinula edodes) Extract for Its Antigingivitis Activity

    Get PDF
    Gingivitis is a preventable disease characterised by inflammation of the gums due to the buildup of a microbial biofilm at the gingival margin. It is implicated as a precursor to periodontitis, a much more serious problem which includes associated bone loss. Unfortunately, due to poor oral hygiene among the general population, gingivitis is prevalent and results in high treatment costs. Consequently, the option of treating gingivitis using functional foods, which promote oral health, is an attractive one. Medicinal mushrooms, including shiitake, have long been known for their immune system boosting as well as antimicrobial effects; however, they have not been employed in the treatment of oral disease. In the current study, the effectiveness of shiitake mushroom extract was compared to that of the active component in the leading gingivitis mouthwash, containing chlorhexidine, in an artificial mouth model (constant depth film fermenter). The total bacterial numbers as well as numbers of eight key taxa in the oral community were investigated over time using multiplex qPCR. The results indicated that shiitake mushroom extract lowered the numbers of some pathogenic taxa without affecting the taxa associated with health, unlike chlorhexidine which has a limited effect on all taxa

    Candida albicans as an essential "keystone" component within polymicrobial oral biofilm models?

    Get PDF
    Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence “biomarkers.” Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms’ responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential “keystone” components of oral biofilms. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Toluidine blue-containing polymers exhibit potent bactericidal activity when irradiated with red laser light

    Get PDF
    Toluidine blue and toluidine blue-nanogold mixtures were incorporated into polyurethane and silicone polymers by a swell-encapsulation-shrink method using acetone-water mixtures. The surface and mechanical properties of the polymers were changed by the swell-shrink process especially the Young's modulus, but not by the introduction of toluidine blue or nanogold. The antibacterial properties of the various polymers were assessed under laser irradiation at 634 nm against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). The toluidine blue-incorporated polymers showed kills of (>105 cfu/ml) for MRSA after just one minute of exposure. This is, to our knowledge, the most potent light-activated antimicrobial polymer combination reported to date

    Effects of Fruit and Vegetable Low Molecular Mass Fractions on Gene Expression in Gingival Cells Challenged with Prevotella intermedia and Actinomyces naeslundii

    Get PDF
    Low molecular mass (LMM) fractions obtained from extracts of raspberry, red chicory, and Shiitake mushrooms have been shown to be an useful source of specific antibacterial, antiadhesion/coaggregation, and antibiofilm agent(s) that might be used for protection towards caries and gingivitis. In this paper, the effects of such LMM fractions on human gingival KB cells exposed to the periodontal pathogens Prevotella intermedia and Actinomyces naeslundii were evaluated. Expression of cytokeratin 18 (CK18) and β4 integrin (β4INT) genes, that are involved in cell proliferation/differentiation and adhesion, and of the antimicrobial peptide β2 defensin (HβD2) in KB cells was increased upon exposure to either live or heat-killed bacteria. All LMM fractions tested prevented or reduced the induction of gene expression by P. intermedia and A. naeslundii depending on the experimental conditions. Overall, the results suggested that LMM fractions could modulate the effects of bacteria associated with periodontal disease in gingival cells

    The Effects of Fractions from Shiitake Mushroom on Composition and Cariogenicity of Dental Plaque Microcosms in an In Vitro Caries Model

    Get PDF
    The aim of the current study was to investigate the anticariogenic potential of the (sub)fractions obtained from the edible mushroom shiitake (Lentinula edodes) in in vitro caries model. We used a modified constant depth film fermentor (CDFF) with pooled saliva as the inoculum and bovine dentin as a substratum. The test compounds were low molecular weight fraction (MLMW) of the shiitake extract and subfractions 4 and 5 (SF4 and SF5) of this fraction. Chlorhexidine (CHX) and water served as a positive and a negative control, respectively. Dentin mineral loss was quantified (TMR), microbial shifts within the microcosms were determined (qPCR), and the acidogenicity of the microcosms was assessed (CIA). From the compounds tested, the SF4 of shiitake showed strong inhibiting effect on dentin demineralization and induced microbial shifts that could be associated with oral health. The acid producing potential was increased, suggesting uncoupling of the glycolysis of the microbiota by the exposure to SF4. In conclusion, the results suggest that SF4 of shiitake has an anticariogenic potential

    Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    Get PDF
    This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods

    Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules

    Get PDF
    Background: Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties.<p></p> Methods: An in vitro multi-species biofilm containing <i>S. mitis, F. nucleatum, P. Gingivalis</i> and <i>A. Actinomycetemcomitans</i> was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level.<p></p> Results: CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA.<p></p> Conclusions: CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.<p></p&gt
    corecore