12 research outputs found

    Medical Countermeasures for Radiation Induced Health Effects: Reports of an Interagency Panel Session Held at the NASA Human Research Program Investigator's Workshop, January 26, 2017

    Get PDF
    An Interagency Panel Session organized by the NASA Human Research Program Space Radiation Program Element (SRPE) was held during the NASA Human Research Program (HRP) Investigators Workshop (IWS) in Galveston, Texas on January 26, 2017 to identify complementary research areas that will advance the testing and development of medical countermeasures (MCM) in support of radioprotection and radiation mitigation on the ground and in space. There were several areas of common interest identified among the various participating agencies. This report provides a summary of the topics discussed by each agency along with potential areas of intersection for mutual collaboration opportunities. Common goals included repurposing of pharmaceuticals, neutraceuticals for use as radioprotectors and/or mitigators, low-dose/chronic exposure paradigms, late effects post-radiation exposure, mixed-field exposures of gamma-neutron, performance decrements, and methods to determine individual exposure levels

    Workshop Report for Cancer Research: Defining the Shades of Gy: Utilizing the Biological Consequences of Radiotherapy in the Development of New Treatment Approaches—Meeting Viewpoint

    Get PDF
    The ability to physically target radiotherapy using image-guidance is continually improving with photons and particle therapy that include protons and heavier ions such as carbon. The unit of dose deposited is the gray (Gy); however, particle therapies produce different patterns of ionizations, and there is evidence that the biological effects of radiation depend on dose size, schedule, and type of radiation. This National Cancer Institute (NCI)–sponsored workshop addressed the potential of using radiation-induced biological perturbations in addition to physical dose, Gy, as a transformational approach to quantifying radiation

    Interlaboratory comparison of the dicentric chromosome assay for radiation biodosimetry in mass casualty events

    No full text
    This interlaboratory comparison validates the dicentric chromosome assay for assessing radiation dose in mass casualty accidents and identifies the advantages and limitations of an international biodosimetry network. The assay's validity and accuracy were determined among five laboratories following the International Organization for Standardization guidelines. Blood samples irradiated at the Armed Forces Radiobiology Research Institute were shipped to all laboratories, which constructed individual radiation calibration curves and assessed the dose to dose-blinded samples. Each laboratory constructed a dose-effect calibration curve for the yield of dicentrics for 60Co γ rays in the 0 to 5-Gy range, using the maximum likelihood linear-quadratic model, Y = c + αD + βD2. For all laboratories, the estimated coefficients of the fitted curves were within the 99.7% confidence intervals (CIs), but the observed dicentric yields differed. When each laboratory assessed radiation doses to four dose-blinded blood samples by comparing the observed dicentric yield with the laboratory's own calibration curve, the estimates were accurate in all laboratories at all doses. For all laboratories, actual doses were within the 99.75% CI for the assessed dose. Across the dose range, the error in the estimated doses, compared to the physical doses, ranged from 15% underestimation to 15% overestimation

    Biological dosimetry by the triage dicentric chromosome assay: Potential implications for treatment of acute radiation syndrome in radiological mass casualties

    No full text
    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases
    corecore