92 research outputs found

    ZnO nanorod-arrays as photo-(electro)chemical materials: strategies designed to overcome the material's natural limitations

    Get PDF
    The urgent need for clean and storable energy drives many currently topical areas of materials research. Among the many materials under investigation zinc oxide is one of the most studied in relation to its use in photo-(electro)chemical applications. This study aims to give an overview of some of the main challenges associated with the use of zinc oxide for these applications: the high density of intrinsic defects which can lead to fast recombination, low visible light absorption and the occurrence of photo-corrosion. Employing simple low-temperature solution based methods; it is shown how defect-engineering can be used to increase the photo-electrochemical performance and how doping can strongly increase the visible light absorption of zinc oxide nanorod-arrays. Furthermore the deposition of ultra-thin titanium dioxide layers using atomic layer deposition is investigated as possible route for the protection of zinc oxide against photo-corrosion

    Electrical and physical characterization of the Al<sub>2</sub>O<sub>3</sub>/ <i>p</i>-GaSb interface for 1%, 5%, 10%, and 22% (NH<sub>4</sub>)<sub>2</sub>S surface treatments

    Get PDF
    In this work, the impact of ammonium sulfide ((NH&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;S) surface treatment on the electrical passivation of the Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/ &lt;i&gt;p&lt;/i&gt;-GaSb interface is studied for varying sulfide concentrations. Prior to atomic layer deposition of Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;, GaSb surfaces were treated in 1%, 5%, 10%, and 22% (NH&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;S solutions for 10 min at 295 K. The smallest stretch-out and flatband voltage shifts coupled with the largest capacitance swing, as indicated by capacitance-voltage (&lt;i&gt;CV&lt;/i&gt;) measurements, were obtained for the 1% treatment. The resulting interface defect trap density (&lt;i&gt;D&lt;/i&gt;&lt;sub&gt;it&lt;/sub&gt;) distribution showed a minimum value of 4 x 10&lt;sup&gt;12&lt;/sup&gt; cm&lt;sup&gt;-2&lt;/sup&gt;eV&lt;sup&gt;-1&lt;/sup&gt; at &lt;i&gt;E&lt;/i&gt;&lt;sub&gt;v&lt;/sub&gt; + 0.27 eV. Transmission electron microscopy and atomic force microscopy examination revealed the formation of interfacial layers and increased roughness at the Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/ &lt;i&gt;p&lt;/i&gt;-GaSb interface of samples treated with 10% and 22% (NH&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;S. In combination, these effects degrade the interface quality as reflected in the &lt;i&gt;CV&lt;/i&gt; characteristics

    Understanding of transmission in the range of high-order photonic bands in thin opal film

    Get PDF
    Diffraction in the face centered cubic lattice cannot explain some minima observed in the transmission spectra of self-assembled opal films. Here, we compared them with minima observed in the transmission spectra of a hexagonal close packed monolayer of spheres of the same diameter. The identity of the sphere packing on the surface of the opal film and in the sphere monolayer was demonstrated by the light diffraction at the sample surfaces. It was shown that excitation of surface propagating modes in the opal film is responsible for the formation of additional minima in opal film transmission. (C) 2008 American Institute of Physics. (DOI: 10.1063/1.2920443

    Inversion in the In0.53Ga0.47As metal-oxide-semiconductor system: Impact of the In0.53Ga0.47As doping concentration

    Get PDF
    In0.53Ga0.47As metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate oxide and a range of n and p-type In0.53Ga0.47As epitaxial concentrations were examined. Multi-frequency capacitance-voltage and conductance-voltage characterization exhibited minority carrier responses consistent with surface inversion. The measured minimum capacitance at high frequency (1 MHz) was in excellent agreement with the theoretical minimum capacitance calculated assuming an inverted surface. Minority carrier generation lifetimes, sg, extracted from experimentally measured transition frequencies, xm, using physics based a.c. simulations, demonstrated a reduction in sg with increasing epitaxial doping concentration. The frequency scaled conductance, G/x, in strong inversion allowed the estimation of accurate Cox values for these MOS devices

    Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals

    Get PDF
    The optical transmission of photonic crystals self-assembled from colloidal nanospheres in opals and assembled from two-dimensional colloidal crystals in a periodic stack by the Langmuir-Blodgett technique has been compared. Elimination of all related zero order diffraction resonances other than that from growth planes and broadening and deepening of the remaining one-dimensional diffraction resonance have been observed for samples prepared by the Langmuir-Blodgett approach, which are explained in terms of the partial disorder of a crystal lattice. (c) 2007 American Institute of Physics.(DOI:10.1063/1.2714198

    Modification of emission of CdTe nanocrystals by the local field of Langmuir-Blodgett colloidal photonic crystals

    Get PDF
    A light source on the surface of a slab of 2+1-dimensional photonic crystal has been prepared by the Langmuir-Blodgett deposition of a colloidal crystal on top of a thin film containing CdTe nanocrystals. The directional enhancement of the light emission intensity in the spectral range of the photonic bandgap has been revealed through the comparative examination of the angle-resolved transmission, diffraction, and photoluminescence spectra of the prepared structures. Changes in the emission spectrum have been tentatively explained in terms of the acceleration of the radiative recombination due to the increase in the local field strength at photonic bandgap resonance and changes in the emission diagram-as arising from the wavelength dependence of the topology of the local field pattern

    A bottom-up fabrication method for the production of visible light active photonic crystals

    Get PDF
    A method which combines polymer particle assembly, chemical infiltration and etching with an aerosol assisted deposition process is described for the fabrication of 3D inverse opal (10) structures with sub-micron periodicity and precision. This procedure not only overcomes limitations associated with slow, expensive micro-fabrication methods but also permits the tuning of refractive index contrast via the direct incorporation of photonically-active, preformed, tailored silicon nanostructures. It is demonstrated that this approach can be used to modify the photonic band gap (PBG) by effectively depositing/patterning optically active silicon nanocrystals (ncSi) onto the pore walls of a 3D inverse opal structure. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, separation, fuel cells technology, microelectronics and optoelectronics

    Very large phase shift of microwave signals in a 6 nm Hf x Zr 1− x O 2 ferroelectric at ±3 V

    Get PDF
    In this letter, we report for the first time very large phase shifts of microwaves in the 1–10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1−x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications

    Reconfigurable horizontal-vertical carrier transport in graphene/HfZrO field-effect transistors

    Get PDF
    We have fabricated at wafer level field-effect-transistors (FETs) having as channel graphene monolayers transferred on a HfZrO ferroelectric, grown by atomic layer deposition on a doped Si (100) substrate. These FETs display either horizontal or vertical carrier transport behavior, depending on the applied gate polarity. In one polarity, the FETs behave as a graphene FET where the transport is horizontal between two contacts (drain and grounded source) and is modulated by a back-gate. Changing the polarity, the transport is vertical between the drain and the back-gate and, irrespective of the metallic contact type, Ti/Au or Cr/Au, the source-drain bias modulates the height of the potential barrier between HfZrO and the doped Si substrate, the carrier transport being described by a Schottky mechanism at high gate voltages and by a space-charge limited mechanism low gate voltages. Vertical transport is required by three-dimensional integration technologies for increasing the density of transistors on chip

    An investigation of capacitance-voltage hysteresis in metal/high-k/In0.53Ga0.47As metal-oxide-semiconductor capacitors

    Get PDF
    In this work, we present the results of an investigation into charge trapping in metal/high-k/In0.53Ga0.47As metal-oxide-semiconductor capacitors (MOS capacitors), which is analysed using the hysteresis exhibited in the capacitance-voltage (C-V) response. The availability of both n and p doped In0.53Ga0.47As epitaxial layers allows the investigation of both hole and electron trapping in the bulk of HfO2 and Al2O3 films formed using atomic layer deposition (ALD). The HfO2/In0.53Ga0.47As and Al2O3/In0.53Ga0.47As MOS capacitors exhibit an almost reversible trapping behaviour, where the density of trapped charge is of a similar level to high-k/In0.53Ga0.47As interface state density, for both electrons and holes in the HfO2 and Al2O3 films. The experimental results demonstrate that the magnitude of the C-V hysteresis increases significantly for samples which have a native oxide layer present between the In0.53Ga0.47As surface and the high-k oxide, suggesting that the charge trapping responsible for the C-V hysteresis is taking place primarily in the interfacial oxide transition layer between the In0.53Ga0.47As and the ALD deposited oxide. Analysis of samples with a range of oxide thickness values also demonstrates that the magnitude of the C-V hysteresis window increases linearly with the increasing oxide thickness, and the corresponding trapped charge density is not a function of the oxide thickness, providing further evidence that the charge trapping is predominantly localised as a line charge and taking place primarily in the interfacial oxide transition layer located between the In0.53Ga0.47As and the high-k oxide. (C) 2013 AIP Publishing LLC
    • …
    corecore