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Abstract 

We have fabricated at wafer level field-effect-transistors (FETs) having as channel graphene 

monolayers transferred on a HfZrO ferroelectric, grown by atomic layer deposition on a doped Si 

(100) substrate. These FETs display either horizontal or vertical carrier transport behavior, 

depending on the applied gate polarity. In one polarity, the FETs behave as a graphene FET 

where the transport is horizontal between two contacts (drain and grounded source) and is 

modulated by a back-gate. Changing the polarity, the transport is vertical between the drain and 

the back-gate and, irrespective of the metallic contact type, Ti/Au or Cr/Au, the source-drain bias 

modulates the height of the potential barrier between HfZrO and the doped Si substrate, the 

carrier transport being described by a Schottky mechanism at high gate voltages and by a space-

charge limited mechanism at low gate voltages. Vertical transport is required by three-

dimensional integration technologies for increasing the density of transistors on chip. 
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 2 

1. Introduction  

Reconfigurable nanoelectronic devices have emerged recently in the context of atomically thin 

materials or 2D materials. Several nanoelectronic device functionalities, which are normally 

performed by different devices, could be produced in a single, reconfigurable device, via 

electrostatic doping, i.e. a single or several gate voltages determine the carrier type (n or p) and 

the corresponding densities, replacing chemical doping. It is worth mentioning that, although 

electrostatic doping is not a technique exclusively used for 2D materials without (as graphene) or 

with bandgap (as transition metal dichalcogenides), in the case of 2D materials it is very often 

the only option for doping.  

For example, in graphene, the carrier type is selected by a gate voltage that shifts the 

Fermi level above or below the Dirac point, where the density of carriers is zero, inducing n or p 

doping [1], whereas electrostatic doped contacts can be used also to implement n and p 

MOSFETs in a single device with an on/off ratio of 104 and black phosphorus as channel [2]. 

The same concept, with buried electrode to reconfigure a field-effect transistor (FET) as an n or 

p transistor, was used in the case of FETs based on a monolayer WSe2 channel [3]. A similar 

reconfigurable FET, with buried electrode and a WSe2 channel, was shown to function as either 

one of three fundamental devices: p-n diode, MOSFET or bipolar junction transistor [4]. 

 Electrostatic doping is used not only to implement several devices in a single one, but 

also to obtain multiple circuits functionalities in a single device. In particular, graphene barristors 

have demonstrated reconfigurable logic gates [5], while OR, XOR or majority gates were 

implemented using a single field-effect device electrostatically doped by various metallic gates 

[6]. Moreover, reconfigurable microwave switches and resonators were demonstrated based on 

the metal-semiconductor transition in MoS2 monolayers induced by a DC voltage [7, 8], whereas 

gated metal-insulator transition in MoTe2 was proven experimentally recently [9]. In addition, 

electrostatic doping could be used in a large range of devices that are not based on 2D materials, 

such as Schottky barrier MOSFETs, reconfigurable FETs based on nanowires, carbon nanotubes, 
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or tunneling FETs, providing a very good control on carrier concentration profiles [10]. For 

instance, single-walled carbon nanotubes connected by two metallic electrodes in a buried gate 

configuration work as either a p-n diode or as ambipolar FET, depending on the applied gate 

voltages [11]. 

 Reconfigurable nanoelectronic devices based on atomically thin materials could have a 

very important role in future architecture electronics, since the implementation of multiple 

functionalities in a single device could reduce drastically the dimensions of circuits, being thus 

an enhancement of Moore’s law, based on CMOS transistors, as it reaches its limits. In this 

respect, our paper describes a FET which is able to reconfigure into a horizontal or vertical FET 

depending on the gate voltage. The transistor, consisting of a p-Si substrate, which plays the role 

of a backgate G, on which a thin layer of HfZrO is grown, on top of which a graphene monolayer 

is deposited and source S and drain D electrical contacts are patterned, changes not only the 

direction of current flow but also the charge carrier source and transport mechanisms as the gate 

voltage polarity is changed. Moreover, the ability to work in a vertical transport regime is of 

particular interest for three-dimensional integration of nanoelectronic devices – a technology that 

promises a significant increase in the density of transistors on chip [12]. 

 

2. Operation principle and fabrication of the reconfigurable graphene/HfZrO transistor 

A schematic diagram of the device is represented in Fig. 1, which indicates also the two possible 

current flow directions in the three-terminal device (see red arrows in the left side figures). The 

band diagrams in both cases are displayed for VD = 0 and VG = 0. Irrespective of the voltage 

values on the p-Si contact, there is a horizontal current flow, as represented in Fig. 1(a). In the 

band diagram in Fig. 1(a), m denotes the workfunction of metal M from which the S and D 

electrodes are fabricated. On the other hand, there is a possibility for vertical current flow 

between p-Si and the drain D contact because the HfZrO layer is very thin, the structure being 

equivalent to a metal-insulator-semiconducting configuration with well-known rectification 
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characteristics. Therefore vertical transport occurs only for positive voltages applied on the p-Si 

contact. The relevant band diagram in this case is represented in Fig. 1(b) for VD = 0 and VG = 0.  

 As a consequence, when the gate voltage VG applied on the p-Si substrate is negative, the 

device behaves as a usual graphene FET (the vertical current flow being disabled), the current 

measured between the S and D electrodes (the drain current ID) flowing in the horizontal 

direction and being channelled by graphene, HfZrO playing the role of the gate dielectric. In this 

case p-Si, and the S and D electrodes fulfil their expected roles, these roles being indicated in the 

parentheses. As VG increases in absolute value (becomes more negative), the Fermi level in 

graphene moves in the direction indicated by the arrow at right. 

 However, if the voltage applied on p-Si is positive, the two current paths mentioned 

above are both enabled, but the vertical current is dominant since the charge carrier 

concentration in p-Si is much larger than in graphene. As a result, the overall direction of current 

flow becomes vertical, the charge carriers collected by the drain electrode originating mainly 

from p-Si. Thus, p-Si becomes the effective S electrode, fact that is suggested by the parentheses 

in Fig. 1(b), left. These positive charges have to overcome the potential barrier between p-Si and 

HfZrO before traversing the graphene layer and being collected by the D electrode. Although 

apparently the device should transform into a diode, the third electrode is able to modulate the 

current between p-Si and S, and hence the former S electrode plays the role of gate (role that is 

indicated in the parenthesis). To understand this modulation effect, it should be noted that the 

ultrathin HfZrO layer becomes polarized by the proximity with the doped Si layer and graphene, 

which is equivalent to the application of a weak electric field on the ferroelectric material. As VD 

(the voltage between S and D electrodes) increases towards positive values the equivalent 

electric field on HfZrO decreases (dashed red lines in the figure at right as response to the shift 

of the Fermi level in graphene represented by the arrow) and the barrier height seen by charge 

carriers from p-Si increases. As a result, the current collected by the D electrode decreases.  
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 5 

 The considerations above indicate that the three-terminal device proposed in this paper is 

a transistor in the sense that the voltage applied on one terminal modulates the current flowing 

through the other two terminals. However, it is not a typical FET because the role of source and 

gate electrodes changes with the polarity applied on p-Si.  

The graphene/HfZrO transistors were fabricated following several steps. In the first step, 

6 nm of HfxZr1-xO2 thin film was grown on a 4 inch p-doped Si (100) wafer by the atomic layer 

deposition (ALD) method. Further, a high-quality CVD-grown monolayer of graphene 

(Graphenea, https://www.graphenea.com) was transferred on HfxZr1-xO2 over the entire wafer.  

The wafer was cut in two chips, one being used for graphene/ferroelectric memories [13] 

and the other for the present study. Therefore, details regarding the ALD growth method and the 

structural characterization of HfxZr1-xO2 are found in [13] and the accompanying supporting 

information. Before graphene transfer, a detailed structural analysis was performed for HfxZr1-

xO2. X-ray photoelectron spectroscopy (XPS) analysis dedicated to find the precise chemical 

composition of HfxZr1-xO2 indicated that 45.0=x , so that the HfZrO thin film that we refer to is 

in fact Hf0.45Zr0.55O2. The thickness of HfZrO, measured by spectroscopic ellipsometry, is 

5.8±0.2 nm using an optical model reported before [14, 15]. GIXRD patterns for HfZrO revealed 

the occurrence of the HfO2(ZrO2) orthorhombic phase, with Pbc21 symmetry. Extensive PFM 

(Piezoelectric Force Microscopy) analysis was carried out to establish the ferroelectricity of the 

samples, while Raman spectroscopy confirmed the quality of the graphene monolayer, by 

showing only the 2D and G peaks with a ratio > 1.9 over 80% of the wafer area; further details 

are given in [13] and the corresponding supporting information. 

 The graphene channels were patterned in a bow-tie shape by e-beam, using a RAITH e-

Line, and then etched by RIE in oxygen plasma (equipment: SENTECH Etchlab 200) (see Fig. 

2(a)). Two types of graphene/HfZrO FETs metallic electrodes for source S and drain D were 

then patterned on top of the graphene channel: Cr (5 nm)/Au (100 nm) and Ti (5 nm)/Au (100 

nm), with dimensions of 150 m 150 m. The S and D electrodes were patterned by e-beam 

Page 5 of 24 AUTHOR SUBMITTED MANUSCRIPT - NANO-122818.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://www.graphenea.com/


 6 

lithography and deposited by an e-beam Temescal FC200 evaporation system. Figure 2(b) shows 

the optical image of the chip containing graphene/HfZrO FETs at right and the SEM of one 

fabricated device at left. The FETs had channel lengths of L = 400 nm and widths of W = 300 nm 

for both types of contacts. 50 FETs were fabricated on a single chip of graphene/HfZrO/Si, 25 

FETs for each type of contacts. 

 As mentioned before, we investigated the effect of two types of contacts: Ti/Au and 

Cr/Au on the device operation. The reason of studying these two types of contacts is that they are 

among the most common used contacts and because their contact resistivity in graphene-based 

devices is quite different [16]. As such, devices with these two types of contacts could have 

dissimilar characteristics, since graphene plays a major role, being either channel or modulating 

the HfZrO barrier. 

 

3. Electrical characterization of the device and discussions 

The electrical characterization of graphene/HfZrO FETs was performed using a Keithley SCS 

4200 station, all three channels being equipped with low noise amplifiers and connected to a 

probe station enclosed in a Faraday cage, where all on-chip measurements were carried out. We 

have measured all 50 transistors on the chip, and found that 6 did not work because the metallic 

contacts were exfoliated during measurements. We have not used any fitting algorithms during 

or after measurements, and all measurements were double-swept at various sweeping rates to 

guarantee the accuracy of measurements. 

Typical drain current ID versus gate voltage VG characteristics for different drain voltage 

VD values indicated in the legend for graphene/HfZrO FETs with Ti-Au contacts are shown in 

Fig. 3(a). One can observe from this figure a linear ID–VG region for large drain voltages, with 

small current values at negative VG (detailed also in the inset), and a non-linear ID–VG region, 

with large current values and hysteretic behavior, for positive gate voltages. These two behaviors 

can be attributed to the horizontal and vertical transport regimes, respectively, corresponding to 
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 7 

the situations where the charge carriers are transported by the graphene channel (characterized 

by a relatively small density of states) between source and drain and, respectively, flow between 

the gate electrode and drain, through the doped silicon/HfZrO interface. The transition between 

these two transport regimes is illustrated by the humps in the ID current in the inset for small 

positive VG values. Although the ID–VG dependence in the inset seems to be linear, so that the 

graphene FET does not go in an off state, a closer examination of the inset for low VD values 

show (see Fig. 3(b), where only the graphene FET behavior/negative VG region is of interest) that 

in this case the characteristics are non-linear and that there is at least a two-orders-of-magnitude 

variation in the drain current when the gate voltage is swept from near 0 to -20 V. This suggests 

that there is a small ferroelectric-induced bandgap, of about 180 meV, which, however, can 

easily be overcome for drain voltages of a few volts. This finding is similar to theoretical 

predictions of bandgap opening in bilayer graphene when transferred on a ferroelectric layer and 

is attributed to the spontaneous polarization field of the ferroelectric [17]. Note that the almost 

constant ID value in Fig. 3(b) for VD = 2 V and small positive values of VG corresponds to the 

humps in the ID current in the inset in Fig. 3(a) mentioned before, and indicates a transition 

region between horizontal and vertical transport regimes.  

Moreover, we have recently performed atomistic simulation regarding graphene/HfZrO 

and we have observed the occurrence of an induced bandgap by the ferroelectric HfZrO due to 

orbital hybridization and locally deformed graphene structure [18]. The bandgap of 0.18 eV is 

very near to the theoretical value of 0.25 eV for atomistic strictures formed by graphene/HfZrO 

and terminated with Hf atoms. This fact is of outmost importance since only haexagonal boron 

nitride (h-BN) is known to induce a bandgap in graphene. However, h-BN is difficult to be 

grown at the wafer level for graphene logical applications, while HfZrO can be grown on Si 

wafers of any size.  

Another observation that can be made from Fig. 3(a) is that, whether the gate voltage 

modulates the charge density in the graphene channel (for negative VG values/positive ID), as 
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 8 

expected, in the vertical transport regime (for positive VG values/negative ID), the VD bias seems 

to shift the gate voltage value at which the current starts to increase/takes negative values. This 

shift is almost linear in VD, with a slope of 1.74, as can be seen from Fig. 3(c). The third 

observation is that, in the vertical transport regime, where VG plays the role of the drain voltage, 

the charge transport mechanism seems to change with VD, from a hysteresis-free, abrupt 

variation for VD = 0, to a slower variation, associated to a significant hysteresis for large VD 

values. 

 Based on the considerations above, we investigated the transport mechanism at VD = 0 V 

and 6 V, respectively. In the first case, a double-logarithmic ID–VG dependence, shown in the 

inset of Fig. 4(a), revealed a 
GD VI =  dependence with  = 4 for low VG values and  = 1.4 for 

high gate voltages. The first case is consistent with a space charge limited current mechanism, in 

which the negatively-charged traps/residual impurities related to the hydroxyl groups in the 

interfacial layer that forms between HfZrO and the Si substrate during ALD deposition [19, 20], 

enhance the applied electric field. On the other hand, Fig. 4(a) shows that at high VG values the 

transport mechanism is consistent with Schottky emission, the experimental data fitting well the 

relation :  

 

( )







 −
−

Tk

eEe
I

B

B
D

 4/
exp                                                                                                    (1) 

 

where B  is the barrier height, E the applied electric field (proportional to VG),  the permittivity 

of the material, kB the Boltzmann constant and T the room temperature. As suggested by Fig. 

3(b), the height of B  is modulated by the drain voltage. The slope of the ln(ID)–(VG)1/2 

dependence is about 0.66, as can be seen from Fig. 4(a), from which the relative permittivity of 

HfZrO is found to be about 28 taking into account the potential drops on Si and the ferroelectric 
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layer with a thickness of 6 nm. This value of the relative permittivity of HfZrO is in very good 

agreement with that in Ref. [21]. 

 A similar ln(ID)–ln(VG,sh) dependence for VD = 6 V, where VG,sh is the (shifted) VG value 

measured from the gate voltage at which ID = 0 (see the shift of VG with VD discussed above), 

shows that for all VG values the  exponent in 
GD VI =  is almost equal to or higher than 2, 

indicating again a space charge limited current mechanism. Note that as VD increases, the 

effective barrier height at the Si/HfZrO interface also increases, as can be seen from the decrease 

in the ID value. Thus, for large VD values the traps in the interfacial layer between HfZrO and the 

Si dominate the charge transport,  a fact supported also by the appearance of hysteretic behavior, 

illustrated in Figs. 3(a) and 4(b). 

 Figure 5 depicts the gate voltage dependence of the parameter GDm VIg = /  in the 

graphene/HfZrO FET with Ti-Au contacts discussed previously. In the horizontal transport 

regime gm is identical to the transconductance of the FET, while in the vertical transport regime 

it should be identified with the conductance of the device, since in this case the role of gate and 

drain contacts interchange. However, as can be seen from this figure, gm takes values higher than 

3 mS, which shows that the current can be significantly modulated by changing VG. 

 Typical ID–VG dependences for different drain voltage values in the legend for 

graphene/HfZrO FETs with Cr-Au contacts are shown in Fig. 6(a), the inset illustrating a detail 

of these dependencies for the horizontal transport regime, through the graphene channel, case in 

which the current takes positive values. Neither in this regime, nor in the vertical transport 

regime, for which ID is negative, are the characteristics linear, but the hysteretic behavior 

observed in the vertical transport regime in FETs with Ti-Au contacts is barely observable. 

Although the ID–VG characteristics are nonlinear for negative VG voltages, the graphene/HfZrO 

FET seems not to go into an off state for high VD values, as for the case of FETs with Ti-Au 

contacts. However, a logarithmic dependence of the curves in the inset of Fig. 6(a) for small 

drain voltages, shown in Fig. 6(b), indicate again a strong variation of current between on and off 
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states, of at least three orders of magnitude, when VG sweeps between positive and negative 

values. This current variation is larger than for the devices with Ti-Au contacts, suggesting that a 

higher ferroelectric-induced bandgap opens in this case, of about 180 meV. 

 In addition, in comparison to the FETs with Ti-Au contacts, the current at VD = 0 is 

smaller, but can be enhanced significantly at negative VD values, this parameter modulating 

again the effective barrier at the Si/HfZrO interface. The shift of the gate voltage at which the 

sign of the current changes with VD is illustrated in Fig. 6(c). At negative VD values this shift 

could be fitted by a linear dependence with a slope of 0.95, while at positive VD values the slope 

of the linear fit changes to 2.3. All these findings suggest that the unavoidable trap distributions 

at the ferroelectric/contact interface are different in the two situations studied in this paper. 

 To identify the conduction mechanism in FETs with Cr-Au contacts in the vertical 

transport regime, we have once again plotted the ln(ID)–ln(VG) dependence for VD = 0 (low 

current, slower ID variation with VG) and, respectively, the ln(ID)–ln(VG,sh) characteristic for VD = 

-12 V (high current, rapid ID variation with VG). The corresponding results are illustrated in Figs. 

7(a) and (b). In the first case, at low VG values, the experimental data can be fitted by a 
GD VI =  

dependence, with  = 3.8, which suggests a space charge limited current mechanism, the same 

mechanism being also responsible for charge transport at high VG values, where  = 1.8. The 

latest value is close to 2, i.e. to the Child’s square law dependence. The fit in the inset of Fig. 

7(a) supports this transport mechanism. However, when VG decreases, the ln(ID)–ln(VG,sh) curve 

suggests a space charge limited transport at low gate voltages ( = 2.76, as can be seen from the 

inset in Fig. 7(b)), but at high voltages the current can again be fitted with a Schottky emission 

law, as shown in Fig. 7(b). What is remarkable is that the slope of the dependence 

)()ln( 2/1
GD VfI = , i.e. 0.64, is very close to the 0.66 value found for FETs with Ti-Au contacts. 

This fact supports the identification of Schottky emission as the dominant mechanism in the low-

potential-barrier at the Si/HfZrO interface regime, because the obtained relative permittivity of 

Page 10 of 24AUTHOR SUBMITTED MANUSCRIPT - NANO-122818.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 11 

the ferroelectric is comparable in the two situations. In this case the value of this parameter is 

about 31. The potential barrier at the Si/HfZrO interface is modulated by VD. 

 The possibility of modulating the current via the gate voltage, expressed by the gm 

parameter, is illustrated in Fig. 8, gm taking again values up to 3 mS. The same considerations 

related to the interpretation of this parameter as for FETs with Ti-Au contacts hold also in this 

case. 

 

4. Conclusions 

We have demonstrated a CMOS-technology compatible graphene/HfZrO FET fabricated at 

wafer level where the transport or carriers is either horizontal, at negative gate voltages between 

drain-source, or vertical via HfZrO/Si interface at positive gate voltages. Thus, the direction of 

the transport is controlled by the polarity of the gate voltage. In addition, the value of the current 

differs significantly for the two gate polarities, emphasizing the change of the source of charge 

carriers.  

In the horizontal transport regime, we have found that the ferroelectric layer induces a 

small bandgap in the device channel, the magnitude of which depends on the contacts. This 

bandgap is apparent for transport at low drain voltages and induces an on/off current ratio of at 

least two orders of magnitude for FETs with Ti-Au contacts and at least three orders of 

magnitudes for FETs with Cr-Au contacts.  

In the vertical transport, at high voltages the current can be fitted with a Schottky 

emission, while at low-voltages we have a space charge limited current, and traps are dominating 

the transport. We have found that the trap distribution depends on the interface 

ferroelectric/contacts, being different for Ti/Au and Cr/Au contacts on HfZrO, contacts which 

have a different resistivity in graphene-based devices.  

In conclusion, the reconfigurable graphene/HfZrO FET is able to change the transport 

direction from vertical to horizontal via a change in the gate polarity, which makes it among the 

Page 11 of 24 AUTHOR SUBMITTED MANUSCRIPT - NANO-122818.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 12 

first devices able to work in either a two-dimensional or a three-dimensional nanoelectronic 

architecture, essential for high-density electronics. In addition, our results have emphasized the 

fact that, although the conduction mechanisms are the same, irrespective of the metal contact 

type, different contacts influence significantly the performance of the reconfigurable 

graphene/HfZrO FETs.  
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Figure captions 

Fig. 1  Schematic configuration of the device and relevant band diagrams for the (a) horizontal, 

and (b) vertical transport regimes for VD = 0 and VG = 0. The red lines in the figures at left 

indicate the direction of current flow. 

Fig. 2  (a) Graphene monolayer channel cut in a bowtie shape. (b) Optical image of the chip 

containing graphene/HfZrO FETs (right) and SEM of one FET (left), showing the graphene 

channel between S and D. 

Fig. 3 (a) ID–VG dependences in graphene/HfZrO FETs with Ti-Au contacts, for different VD 

values shown in the legend. Inset: detail for positive ID values. (b) Logarithmic scale 

representation for the detail in (a) for small drain voltages. (c) VD dependence of the shift of VG 

values for which ID = 0 for the same FETs. 

Fig. 4 Fittings of the ID– VG dependences in Fig. 3(a) for negative ID values for (a) VD = 0 and 

(b) VD = 6 V 

Fig. 5 Gate voltage dependence of gm for graphene/HfZrO FETs with Ti-Au contacts 

Fig. 6 (a) ID–VG dependences in graphene/HfZrO FETs with Cr-Au contacts, for different VD 

values shown in the legend. Inset: detail for positive ID values. (b) Logarithmic scale 

representation for the detail in (a) for small drain voltages. (c) VD dependence of the shift of VG 

values for which ID = 0 for the same FETs. 

Fig. 7 Fittings of the ID– VG dependences in Fig. 6(a) for negative ID values for (a) VD = 0 and 

(b) VD = -12 V 

Fig. 8 Gate voltage dependence of gm for graphene/HfZrO FETs with Cr-Au contacts 
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