3,263 research outputs found

    The Problem of Social Inclusion and Evaluation of Adult Literacy in Russia

    Full text link
    In the paper Russian results of the Programme for the International Assessment of Adult Competency (PIAAC) are analyzed and compared to the data from the OECD countries. In the focus of the research is the concept of “participation in society” proposed by the developers of the PIAAC. The results show that “social inclusion” and “success” measured in the PIAAC through peoples’ individual achievements are not always connected with high level of competence in Russia. There is a large proportion of people in the group of respondents with the lowest level of literacy, who are “included” and “successful” (at least according to formal criteria). This distinguishes Russia from the OECD countries with developed economies

    Static optimization in PHP 7

    Get PDF
    PHP is a dynamically typed programming language commonly used for the server-side implementation of web applications. Approachability and ease of deployment have made PHP one of the most widely used scripting languages for the web, powering important web applications such as WordPress, Wikipedia, and Facebook. PHP's highly dynamic nature, while providing useful language features, also makes it hard to optimize statically. This paper reports on the implementation of purely static bytecode optimizations for PHP 7, the last major version of PHP. We discuss the challenge of integrating classical compiler optimizations, which have been developed in the context of statically-typed languages, into a programming language that is dynamically and weakly typed, and supports a plethora of dynamic language features. Based on a careful analysis of language semantics, we adapt static single assignment (SSA) form for use in PHP. Combined with type inference, this allows type-based specialization of instructions, as well as the application of various classical SSA-enabled compiler optimizations such as constant propagation or dead code elimination. We evaluate the impact of the proposed static optimizations on a wide collection of programs, including micro-benchmarks, libraries and web frameworks. Despite the dynamic nature of PHP, our approach achieves an average speedup of 50% on micro-benchmarks, 13% on computationally intensive libraries, as well as 1.1% (MediaWiki) and 3.5% (WordPress) on web applications

    Patterns of folded structure formation in the maximum bending zone of [111] FCC single crystals

    Get PDF
    Formation of folded structure in the zone of [111] FCC single crystals maximum bending has been studied on the example of nickel under compression tests. Quasi-periodical behavior of misorientation change in the folded structure has been established following the direction to increasing Schmid factor for the acting slip systems. Change in misorientation inside and on the boundaries of the formed folding coincides with its accumulation in dislocation system: inside and on the boundaries of deformation bands

    GraphDelta : MPNN scoring function for the affinity prediction of protein-ligand complexes

    Get PDF
    In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein-ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (Kd), inhibition constant (Ki), and half maximal inhibitory concentration (IC50). Being rigorously trained on the PDBbind dataset, the model achieves the Pearson correlation coefficient of 0.87 and the RMSE value of 1.05 in pK units, outperforming recently developed 3D convolutional neural network model Kdeep.

    Chlorine Adsorption on TiO2(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting

    Get PDF
    This study was financially supported M-ERA.NET project CatWatSplit. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2. The calculations were performed at the Latvian SuperCluster (LASC) located in Institute of Solid State Physics, University of Latvia.Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H2O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO2 surface as the excitation energy is around the band gap energy of TiO2. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO2 (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO2 for transforming the water into hydroxyl and hydrogen by photoinduced driving force. --//-- This is an open access article Y.-P. Lin, D. Bocharov, I. Isakoviča, V. Pankratov, A.A. Popov, A.I. Popov, S. Piskunov; Chlorine adsorption on TiO2(110)/water interface: Nonadiabatic molecular dynamics simulations for potocatalytic water splitting; Electron. Mater., 2023, 4, pp. 33-48; DOI: 10.3390/electronicmat4010004; https://www.mdpi.com/2673-3978/4/1/4 published under the CC BY 4.0 licence.M-ERA.NET project CatWatSplit; Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2

    Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions

    Full text link
    The interactions between the layers of double-walled carbon nanotubes induce measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in free-standing double-walled carbon nanotubes has been reported in the past several years, comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty
    corecore