328 research outputs found

    Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes

    Get PDF
    Context: The safety of insulin in the treatment of type 2 diabetes mellitus (T2DM) has recently undergone scrutiny. Objective: The objective of the study was to characterize the risk of adverse events associated with glucose-lowering therapies in people with T2DM. Design and Setting: This was a retrospective cohort study using data from the UK General Practice Research Database, 2000–2010. Patients: Patients comprised 84 622 primary care patients with T2DM treated with one of five glucose-lowering regimens: metformin monotherapy, sulfonylurea monotherapy, insulin monotherapy, metformin plus sulfonylurea combination therapy, and insulin plus metformin combination therapy. There were 105 123 exposure periods. Main Outcome Measures: The risk of the first major adverse cardiac event, first cancer, or mortality was measured. Secondary outcomes included these individual constituents and microvascular complications. Results: In the same model, and using metformin monotherapy as the referent, the adjusted hazard ratio (aHR) for the primary end point was significantly increased for sulfonylurea monotherapy (1.436, 95% confidence interval [CI] 1.354–1.523), insulin monotherapy (1.808, 95% CI 1.630–2.005), and insulin plus metformin (1.309, 95% CI 1.150–1.491). In glycosylated hemoglobin/morbidity subgroups, patients treated with insulin monotherapy had aHRs for the primary outcome ranging from 1.469 (95% CI 0.978–2.206) to 2.644 (95% CI 1.896–3.687). For all secondary outcomes, insulin monotherapy had increased aHRs: myocardial infarction (1.954, 95% CI 1.479–2.583), major adverse cardiac events (1.736, 95% CI 1.441–2.092), stroke (1.432, 95% CI 1.159–1.771), renal complications (3.504, 95% CI 2.718–4.518), neuropathy (2.146, 95% CI 1.832–2.514), eye complications (1.171, 95% CI 1.057–1.298), cancer (1.437, 95% CI 1.234–1.674), or all-cause mortality (2.197, 95% CI 1.983–2.434). When compared directly, aHRs were higher for insulin monotherapy vs all other regimens for the primary end point and all-cause mortality. Conclusions: In people with T2DM, exogenous insulin therapy was associated with an increased risk of diabetes-related complications, cancer, and all-cause mortality. Differences in baseline characteristics between treatment groups should be considered when interpreting these results

    Estimation of health-related utility (EQ-5D index) in subjects with seasonal allergic rhinoconjunctivitis to evaluate health gain associated with sublingual grass allergen immunotherapy

    Get PDF
    Background: Grass allergen immunotherapy (AIT) reduces symptom severity in seasonal allergic rhinoconjunctivitis (ARC) but its impact on general health-related utility has not been characterised for the purposes of economic evaluation. The aim of this study was to model the preferred measure of utility, EQ-5D index, from symptom severity and estimate incremental quality adjusted life years (QALYs) associated with SQ-standardised grass immunotherapy tablet (GRAZAX®, 75,000 SQ-T/2,800 BAU, ALK, Denmark). Methods: Data were analysed from five consecutive pollen seasons in a randomised placebo controlled trial of GRAZAX®. Binomial and Gaussian mixed effects modelling related weekly EQ-5D index score to daily symptom and medication scores (DSS & DMS respectively). In turn, daily EQ-5D index was estimated from ARC symptoms and medication use. Results: DSS and DMS were the principal predictors of ‘perfect’ health (EQ-5D = 1.000; binomial) and ‘imperfect’ health (EQ-5D < 1.000; Gaussian). Each unit increase in DSS and DMS reduced the odds of ‘perfect’ health (EQ-5D = 1.000) by 27% and 16% respectively, and reduced ‘imperfect’ health by 0.17 and 0.13, respectively. Gender remained the only other significant main fixed effect (Male odds ratio [OR] = 1.82). Incremental estimated EQ-5D index utility for GRAZAX® was observed from day -30 to day +70 of the pooled pollen season; mean daily utility for GRAZAX® = 0.938 units (95%CI 0.932-0.943) vs. 0.914 (0.907-0.921) for placebo, an incremental difference of 0.0238 (p < 0.001). This translates into an incremental 0.0324 Quality Adjusted Life Years over the five year study period. Conclusions: ARC symptoms and medication use are the main predictors of EQ-5D index. The incremental QALYs observed for GRAZAX® may not fully describe the health benefits of this treatment, suggesting that economic modelling may be conservative

    Identification of Functional Toxin/Immunity Genes Linked to Contact-Dependent Growth Inhibition (CDI) and Rearrangement Hotspot (Rhs) Systems

    Get PDF
    Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI+ cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These “orphan” cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems

    Judicial Review, Irrationality, and the Legitimacy of Merits-Review

    Get PDF
    The definition of the irrationality ground of judicial review recognises the constitutional principle of the separation of powers, in allowing for judicial control of the executive only very rarely. The author in a previous article in this study found that the courts, on occasions, had intervened in circumstances where administrative decisions arguably were not irrational. To this end, the purpose of this article is to assess the constitutionality of these seemingly low standards of irrationality. The author does so by reference either to the manner of review employed—the use of the proportionality principle, for example—or the context of the administrative decision under scrutiny, such as the infringement of the applicant’s fundamental rights. The author finds that the cases from the previous article where low standards of irrationality were arguably adopted were, in fact, legitimate according to these chosen methods of evaluation. However, this is an interim conclusion because, for reasons of word length, the author is unable to complete a full assessment here. It is therefore proposed that a subsequent article will continue to examine the constitutionality of these cases. Furthermore, the author will also try and establish a zone of executive decision-making, for reasons of democracy, where the courts are excluded from irrationality review. If the author is unsuccessful in this regard, the final conclusion of this study will inevitably be that low standards of judicial intervention exist without limit—a clear assault on the constitutional principle stated above

    Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera

    Get PDF
    Planktonic foraminifera are widely used in biostratigraphic, palaeoceanographic and evolutionary studies, but the strength of many study conclusions could be weakened if taxonomic identifications are not reproducible by different workers. In this study, to assess the relative importance of a range of possible reasons for among-worker disagreement in identification, 100 specimens of 26 species of macroperforate planktonic foraminifera were selected from a core-top site in the subtropical Pacific Ocean. Twenty-three scientists at different career stages – including some with only a few days experience of planktonic foraminifera – were asked to identify each specimen to species level, and to indicate their confidence in each identification. The participants were provided with a species list and had access to additional reference materials. We use generalised linear mixed-effects models to test the relevance of three sets of factors in identification accuracy: participant-level characteristics (including experience), species-level characteristics (including a participant’s knowledge of the species) and specimen-level characteristics (size, confidence in identification). The 19 less experienced scientists achieve a median accuracy of 57 %, which rises to 75 % for specimens they are confident in. For the 4 most experienced participants, overall accuracy is 79 %, rising to 93 % when they are confident. To obtain maximum comparability and ease of analysis, everyone used a standard microscope with only 35× magnification, and each specimen was studied in isolation. Consequently, these data provide a lower limit for an estimate of consistency. Importantly, participants could largely predict whether their identifications were correct or incorrect: their own assessments of specimen-level confidence and of their previous knowledge of species concepts were the strongest predictors of accuracy

    The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

    Get PDF
    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H₀ = 67.15 ± 0.98 km s⁻¹Mpc⁻¹. Allowing the equation of state of dark energy to vary, we obtain wDE = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of ΩK = −0.0043 ± 0.0047

    Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 1α (HIF-1α)

    Get PDF
    Human 2-oxoglutarate oxygenases catalyse a range of biological oxidations including the demethylation of histone and nucleic acid substrates and the hydroxylation of proteins and small molecules. Some of these processes are centrally involved in regulation of cellular responses to hypoxia. The ALKBH proteins are a sub-family of 2OG oxygenases that are defined by homology to the Escherichia coli DNA-methylation repair enzyme AlkB. Here we report evidence that ALKBH5 is probably unique amongst the ALKBH genes in being a direct transcriptional target of hypoxia inducible factor-1 (HIF-1) and is induced by hypoxia in a range of cell types. We show that purified recombinant ALKBH5 is a bona fide 2OG oxygenase that catalyses the decarboxylation of 2OG but appears to have different prime substrate requirements from those so far defined for other ALKBH family members. Our findings define a new class of HIF-transcriptional target gene and suggest that ALKBH5 may have a role in the regulation of cellular responses to hypoxia

    The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Get PDF
    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.Comment: 17 pages, 11 figures, accepted for publication by MNRA

    Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others

    Get PDF
    Background: Previous reports identifying discordance between multiparameter tests at the individual patient level have been largely attributed to methodological shortcomings of multiple in silico studies. Comparisons between tests, when performed using actual diagnostic assays, have been predicted to demonstrate high degrees of concordance. OPTIMA prelim compared predicted risk stratification and subtype classification of different multiparameter tests performed directly on the same population. Methods: Three hundred thirteen women with early breast cancer were randomized to standard (chemotherapy and endocrine therapy) or test-directed (chemotherapy if Oncotype DX recurrence score &gt;25) treatment. Risk stratification was also determined with Prosigna (PAM50), MammaPrint, MammaTyper, NexCourse Breast (IHC4-AQUA), and conventional IHC4 (IHC4). Subtype classification was provided by Blueprint, MammaTyper, and Prosigna. Results: Oncotype DX predicted a higher proportion of tumors as low risk (82.1%, 95% confidence interval [CI] = 77.8% to 86.4%) than were predicted low/intermediate risk using Prosigna (65.5%, 95% CI = 60.1% to 70.9%), IHC4 (72.0%, 95% CI = 66.5% to 77.5%), MammaPrint (61.4%, 95% CI = 55.9% to 66.9%), or NexCourse Breast (61.6%, 95% CI = 55.8% to 67.4%). Strikingly, the five tests showed only modest agreement when dichotomizing results between high vs low/intermediate risk. Only 119 (39.4%) tumors were classified uniformly as either low/intermediate risk or high risk, and 183 (60.6%) were assigned to different risk categories by different tests, although 94 (31.1%) showed agreement between four of five tests. All three subtype tests assigned 59.5% to 62.4% of tumors to luminal A subtype, but only 121 (40.1%) were classified as luminal A by all three tests and only 58 (19.2%) were uniformly assigned as nonluminal A. Discordant subtyping was observed in 123 (40.7%) tumors. Conclusions: Existing evidence on the comparative prognostic information provided by different tests suggests that current multiparameter tests provide broadly equivalent risk information for the population of women with estrogen receptor (ER)–positive breast cancers. However, for the individual patient, tests may provide differing risk categorization and subtype information

    The WiggleZ Dark Energy Survey: final data release and cosmological results

    Get PDF
    This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z = 0.22, 0.41, 0.60, and 0.78, combined with other cosmological data sets. The limiting factor in this analysis is the theoretical modeling of the galaxy power spectrum, including nonlinearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modeling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of six cosmological parameters, {Omega(b)h(2), Omega(CDM)h(2); H-0, tau, A(s), n(s)}, and five supplementary parameters {n(run), r, w, Omega(k), Sigma m(v)}. In combination with the cosmic microwave background, our results are consistent with the Lambda CDM concordance cosmology, with a measurement of the matter density of Omega(m) = 0.29 +/- 0.016 and amplitude of fluctuations sigma(8) = 0.825 +/- 0.017. Using WiggleZ data with cosmic microwave background and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their Lambda CDM model values. The power spectra data and theoretical modeling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data. We also release the data and random catalogs used to construct the baryon acoustic oscillation correlation function
    corecore