5,594 research outputs found

    Two-step rocket engine bipropellant valve Patent

    Get PDF
    Solenoid two-step valve for bipropellant flow rate control to rocket engin

    Two-step rocket engine bipropellant valve concept

    Get PDF
    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells

    COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission

    Get PDF
    The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have been analyzed. During the first two years PKS 0528+134 was most significantly detected at energies above 3 MeV. During the last year there is only evidence for the quasar at energies below 3 MeV indicating a spectral change. The time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well represented by a power-law shape. Spectra collected from different observational periods reveal different power-law shapes: a hard state during flaring observations reported by EGRET, and a soft state otherwise. The combined simultaneous EGRET and COMPTEL spectra indicate these two spectral states as well. During low intensisty gamma-ray phases no spectral break is obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray flaring phases however, the combined COMPTEL and EGRET data require a spectral bending at MeV-energies. By fitting broken power-law functions the best-fit values for the break in photon index range between 0.6 and 1.7, and for the break energy between ~5 MeV and ~20 MeV. Because the flux values measured by COMPTEL below 3 MeV in both states are roughly equal, the observations would be consistent with an additional spectral component showing up during gamma-ray flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a high-energy electron-positron population with a low-energy cutoff in their bulk Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for gamma-ray flaring phases shows that the major energy release across the entire electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33 (1997

    Design guide for high pressure oxygen systems

    Get PDF
    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F

    Infrared luminescence and application of a vibronic-coupling Hamiltonian to the level structure of CdTe:Fe<sup>2+</sup>

    Get PDF
    Samples of crystalline CdTe doped with two different concentrations of iron were prepared by the vertical high-pressure Bridgman method. Absorption and emission spectra were recorded at liquid-helium temperature in the region of the 5T2(D)? 5E(D) infrared transitions of substitutional Fe2+(d6) ions. Especially in the range between 2200 and 2300 cm−1, a rich structure is resolved comprising more lines than predicted from plain crystal-field theory. The explanation of all the important lines is found after introducing a vibronic Jahn-Teller term to the Hamiltonian. A linear coupling between the double-degenerate vibrational mode Δ (or Îł3) to the electronic orbitals of the atomic multiplet of symmetry 5D leads to the diagonalization of the total Hamiltonian in a set of vibronic functions. Just one free parameter is used in the adjustment: the so-called Jahn-Teller energy representing the strength of the coupling. The corresponding value that we report here is 3 cm−1. The energies thus found are in good agreement with the positions of the observed lines in the spectra. With the final wave functions we can calculate the relative intensities of the most important transitions and approximate theoretical line shape. This is also in good agreement with the experiment. Using these same energies and wave functions a calculation was performed to explain data existing in the literature about far-infrared absorption for the system CdTe:Fe2+. Again, good agreement between experiment and theory is found

    Broadband Spectral Analysis of PKS 0528+134: A Report on Six Years of EGRET Observations

    Get PDF
    The multiwavelength spectra of PKS 0528+134 during six years of observations by EGRET have been analyzed using synchrotron self-Compton (SSC) and external radiation Compton (ERC) models. We find that a two-component model, in which the target photons are produced externally to the gamma-ray emitting region, but also including an SSC component, is required to suitably reproduce the spectral energy distributions of the source. Our analysis indicates that there is a trend in the observed properties of PKS 0528+134, as the source goes from a gamma-ray low state to a flaring state. We observe that during the higher gamma-ray states, the bulk Lorentz factor of the jet increases and the ERC component dominates the high-energy emission. Our model calculations indicate the trend that the energies of the electrons giving rise to the synchrotron peak decreases, and the power-ratio of the gamma-ray and low energy spectral components increases, as the source goes from a low to a high gamma-ray state.Comment: 36 pages, 13 figures, final version accepted for publication in ApJ; includes minor modification
    • 

    corecore