5,613 research outputs found
Going places
Journeys. We all make them. Often they take us to exotic places. Sometimes they take us even further. They might take us through time. Or they might take us into a new way of life. There are times too, when we go all over the world and back again only to find that home is, after all, where itâs all happening.
This book contains stories about many different types of journey. We hope you will enjoy travelling into it and finding a world that suits you
The Strange Quark Contribution to the Proton's Magnetic Moment
We report a new determination of the strange quark contribution to the
proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2
from parity-violating e-p elastic scattering. The result uses a revised
analysis of data from the SAMPLE experiment which was carried out at the
MIT-Bates Laboratory. The data are combined with a calculation of the proton's
axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +-
0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison
with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.
Personhood, consciousness, and god : how to be a proper pantheist
© Springer Nature B.V. 2018In this paper I develop a theory of personhood which leaves open the possibility of construing the universe as a person. If successful, it removes one bar to endorsing pantheism. I do this by examining a rising school of thought on personhood, on which persons, or selves, are understood as identical to episodes of consciousness. Through a critique of this experiential approach to personhood, I develop a theory of self as constituted of qualitative mental contents, but where these contents are also capable of unconscious existence. On this theory, though we can be conscious of our selves, consciousness turns out to be inessential to personhood. This move, I then argue, provides resources for responding to the pantheistâs problem of Godâs person.Peer reviewedFinal Accepted Versio
T cell repertoire to citrullinated self-peptides in healthy humans is not confined to the HLA-DR SE alleles; targeting of citrullinated self-peptides presented by HLA-DP4 for tumour therapy
Post-translational modifications are induced in stressed cells which cause them to be recognised by the immune system. One such modification is citrullination where the positive charged arginine is modified to a neutral citrulline. We demonstrate most healthy donors show an oligoclonal CD4 response in vitro to at least one citrullinated vimentin or enolase peptide. Unlike rheumatoid arthritis patients, these T cell responses were not restricted by HLA-DRB1 shared epitope (SE) alleles, suggesting they could be presented by other MHC-II alleles. As HLA-DP is less polymorphic than HLA-DR, we investigated whether the common allele, HLA-DP4 could present citrullinated epitopes. The modification of arginine to citrulline enhanced binding of the peptides to HLA-DP4 and induced high frequency CD4 responses in HLA-DP4 transgenic mouse models. Our previous studies have shown that tumours present citrullinated peptides restricted through HLA-DR4 which are good targets for anti-tumour immunity. In this study we show that citrullinated vimentin and enolase peptides also induced strong anti-tumour immunity (100% survival,
Qweak: A Precision Measurement of the Proton's Weak Charge
The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the
parity-violating asymmetry in elastic scattering at very low of a
longitudinally polarized electron beam on a proton target. The experiment will
measure the weak charge of the proton, and thus the weak mixing angle at low
energy scale, providing a precision test of the Standard Model. Since the value
of the weak mixing angle is approximately 1/4, the weak charge of the proton
is suppressed in the Standard Model, making it
especially sensitive to the value of the mixing angle and also to possible new
physics. The experiment is approved to run at JLab, and the construction plan
calls for the hardware to be ready to install in Hall C in 2007. The
theoretical context of the experiment and the status of its design are
discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003
proceeding
Tradeoffs in jet inlet design: a historical perspective
The design of the inlet(s) is one of the most demanding tasks of the development process of any gas turbine-powered aircraft. This is mainly due to the multi-objective and multidisciplinary nature of the exercise. The solution is generally a compromise between a number of conflicting goals and these conflicts are the subject of the present paper. We look into how these design tradeoffs have been reflected in the actual inlet designs over the years and how the emphasis has shifted from one driver to another. We also review some of the relevant developments of the jet age in aerodynamics and design and manufacturing technology and we examine how they have influenced and informed inlet design decision
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
- âŠ