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Speech perception is facilitated by seeing the articulatory mouth movements of the talker. This is

due to perceptual audiovisual integration, which also causes the McGurk�MacDonald illusion, and

for which a comprehensive computational account is still lacking. Decades of research have largely

focused on the fuzzy logical model of perception (FLMP), which provides excellent fits to experi-

mental observations but also has been criticized for being too flexible, post hoc and difficult to

interpret. The current study introduces the early maximum likelihood estimation (MLE) model of

audiovisual integration to speech perception along with three model variations. In early MLE, inte-

gration is based on a continuous internal representation before categorization, which can make the

model more parsimonious by imposing constraints that reflect experimental designs. The study also

shows that cross-validation can evaluate models of audiovisual integration based on typical data

sets taking both goodness-of-fit and model flexibility into account. All models were tested on a pub-

lished data set previously used for testing the FLMP. Cross-validation favored the early MLE while

more conventional error measures favored more complex models. This difference between conven-

tional error measures and cross-validation was found to be indicative of over-fitting in more com-

plex models such as the FLMP. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4916691]

[JFC] Pages: 2884–2891

I. INTRODUCTION

Speech perception is facilitated when the face of the

talker is seen, as in face-to-face conversation, compared to

when it is not, as in a phone conversation (Sumby and

Pollack, 1954). This effect is stronger when auditory speech

perception is poor and is an important aid for hearing

impaired listeners (Grant et al., 1998). The effect is widely

believed to be caused by perceptual audiovisual integration

rather than just a post-perceptual combination of information

from auditory speech perception and lip-reading. The

McGurk�MacDonald illusion is a striking demonstration of

the perceptual nature of audiovisual integration of speech

(MacDonald and McGurk, 1978; McGurk and MacDonald,

1976). In this illusion a speech sound, e.g., /ba/, is dubbed

onto a video of a face articulating an incongruent phoneme,

e.g., /ga/. This creates an illusory percept, in this example, of

hearing /da/.

Decades of research on the computational mechanisms

underlying audiovisual integration in speech perception has

largely focused on the fuzzy logical model of perception

(FLMP), which has been shown to provide good fits to em-

pirical data in a number of studies (Massaro, 1998; Massaro

and Cohen, 1983, 2000; Massaro et al., 2011; Schwartz,

2010). The good fits of the FLMP have, however, been

argued to be due to the model’s flexibility rather than its

ability to capture the underlying computational mechanisms

(Andersen et al., 2002; Cutting et al., 1992; Myung and Pitt,

1997; Pitt, 1995; Pitt et al., 2003; Schwartz, 2003, 2006;

Vroomen and Gelder, 2000). Although much of this criticism

has been addressed (Massaro, 2000, 2003; Massaro and

Cohen, 1993; Massaro et al., 2001) a consensus has not been

reached despite the invocation of a broad spectrum of meth-

ods for model evaluation.

The current study has two main purposes. First, it intro-

duces early maximum likelihood estimation (MLE)

(Andersen et al., 2005) as a new model of audiovisual inte-

gration in speech perception. Early MLE is based on the

MLE model of multisensory integration of continuous repre-

sentations (Ernst and Banks, 2002). By introducing a

response boundary, as in signal detection theory (Green and

Swets, 1966), the model can be applied to categorical

responses. In this model, integration occurs before categori-

zation, hence the name early MLE.

The idea of modeling audiovisual integration in speech

perception based on a continuous internal representation is

not new. The pre-labeling model introduced by Braida (1991)

is also based on this idea but differs in the way it models the

mechanism of audiovisual integration. In the pre-labeling

model, auditory and visual internal representations are

assumed to be orthogonal and integration occurs by basing the

decision on the Pythagorean sum of the two. Thus, the model

is inherently multidimensional. In addition to assigning sepa-

rate dimensions to the perceptual modalities, the pre-labeling

model can also assign multiple dimensions to the representa-

tion within modalities. A multidimensional phonetic represen-

tation is probably very realistic as speech perception relies on

multiple perceptual features. This realism comes, however, at

the cost of computational complexity because the multiple
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dimensions necessitate numerical evaluation of multidimen-

sional integrals when fitting it. To avoid this problem, the cur-

rent study is limited to models with a one-dimensional

internal representation. The current study aims to show that

this can be done without critical loss of realism when applying

the models to data from experimental paradigms in which a

single phonetic contrast is varied.

The MLE principle is also not new to models of audio-

visual speech perception as it is inherent to the FLMP, which

can be interpreted as MLE based on categorical representa-

tions (Massaro, 1998). Hence, integration happens after cate-

gorization in the FLMP and it can therefore be seen as a late

MLE model. Although this difference between early and late

MLE integration may seem subtle, the current study aims to

show that there are great differences between the models in

terms of parameterization and model complexity. These dif-

ferences form the basis for the design of three related models

all of which will be considered as alternatives to early MLE

and the FLMP.

The other main purpose of this paper is to show that

cross-validation effectively includes both goodness-of-fit and

model flexibility in model evaluation, and provides meaningful

selection of models. The development of methods for model

evaluation in cognitive and perceptual science is an important

field in its own right and the FLMP has had an important role

in this field. Model evaluation methods that have been applied

to the FLMP can be divided into three categories.

First, methods such as Akaike’s information criterion

(AIC; Akaike, 1974, Pitt et al., 2002), Bayesian information

criterion (Schwarz, 1978; Pitt et al., 2002) and the root mean

squared error (RMSE) corrected for the number of degrees

of freedom (e.g., Massaro, 1998) depend on the goodness-of-

fit penalized by a function of the number of free parameters.

The problem with these methods is that since the number of

free parameters is a poor measure of model complexity for

non-linear models they do not always correct adequately for

model complexity (Pitt et al., 2002). This is problematic

when evaluating the FLMP, which is non-linear (Myung and

Pitt, 1997), especially in some regions of its parameter space

(Andersen et al., 2002; Schwartz, 2006).

Other methods, such as the Bayes factor (Massaro et al.,
2001; Myung and Pitt, 1997; Schwartz, 2006, 2010) and

minimum description length (Pitt et al., 2002) do not suffer

from this problem but are algorithmically complex (Pitt

et al., 2002) although a simplifying assumption exists for the

Bayes factor (see Schwartz, 2010).

Finally, cross-validation methods do not suffer from the

same problems: They apply to all types of models and are

straightforward to apply. They aim to estimate the general-

ization, or prediction, error, which is the expected error for

new data not used in fitting the model parameters. The gen-

eralization error differs from the training error, the error for

the data that were used in fitting the model parameters.

Variability in data is generally due to fixed and random

effects. Flexible models will, generally, fit closely to both

types of variations. This is problematic because they have,

so to speak, found a trend in randomness and this trend will,

generally, not reappear in new data. This is called over-

fitting and causes flexible models to have high generalization

errors. At the other end of the spectrum of complexity are

models that are not sufficiently complex to capture the fixed

effects. These models are said to under-fit and will have high

training errors as well as high generalization errors.

Somewhere between these two extremes lies the true model

that fits the fixed effects perfectly. The true model will have

higher training error than more flexible models because it

cannot accommodate random variations in the data. This is

why the training error is a poor criterion for evaluating mod-

els. The true model will, however, have the lowest possible

generalization error, which is why the generalization error is

the ideal criterion for evaluating models. The problem is that

estimating the generalization error requires separate data for

fitting the model and for evaluating the model. This

increases the amount of data required. Pitt and Myung

(2002) provide a good introduction to these concepts.

In cross-validation the data are split into a training set,

which is used for fitting the model, and a test set, which is used

for estimating the generalization error. The process of splitting,

fitting, and evaluating is repeated so that all the data are used

in the evaluation. In this way, cross-validation circumvents the

requirement for separate training and test data. Each split is

called a fold and the sum of the generalization error estimates

across folds is called the test, or validation, error. The valida-

tion error is thus an estimate of the generalization error, which

is based on the entire data set. Hastie et al. (2009) and MacKay

(2003) provide introductions to cross-validation and compare it

to other model evaluation techniques.

Data splitting can be done in several different ways:

between observers, trials, conditions, or stimuli. It is important

that the way that the data are split reflects how the model

aims to generalize. The FLMP and other models of audiovi-

sual integration aim at predicting the audiovisual percept

based on the auditory and visual percepts, or, more generally,

at generalizing perception across stimuli and modalities.

Therefore, cross-validation splits should be made between

stimuli within observers.

To ensure that models and methods are compared using

representative data all model comparisons in the current

study are based on the University of California Santa Cruz

(UCSC) corpus (Massaro, 1998; Massaro et al., 1995;

Massaro et al., 1993), which has been used extensively for

comparing models of audiovisual integration of speech

(Massaro, 1998; Massaro et al., 2001; Schwartz, 2006, 2010;

Wagenmakers et al., 2004).

II. METHODS

A. Data

The data used in the current study are the UCSC corpus

collected by Massaro and co-workers (Massaro, 1998;

Massaro et al., 1993; Massaro et al., 1995) who kindly made

it available online.1 In this data set, 82 observers identified

five auditory, five visual, and 25 audiovisual speech stimuli.

The stimuli were synthesized using a speech synthesizer and

an animated talking head. The auditory and visual stimuli

were designed to fall approximately linearly on a continuum

ranging from a clear /ba/ to a clear /da/. The audiovisual

stimuli consisted of all the 25 possible combinations of the
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auditory and visual stimuli. The observers identified the

stimuli as /ba/ or /da/. All data were stored as the proportion

of /da/-responses. According to the reports describing the ex-

perimental procedures, each stimulus was presented 24

times. Hence, multiplying the response proportion by 24

should yield the response counts, which should be integer

values. This was not the case for several response propor-

tions indicating that there was some variability in the number

of stimulus presentations. This has prevented the usage of

likelihood based error measures in the current study, which

therefore uses error measures based on the squared error.

B. Models

1. Gaussian model without integration

The Gaussian model without integration only introdu-

ces a psychometric function in order to impose constraints

based on the experimental design. The purpose of this

model is two-fold. First, it is contained in some of the

models of integration described here. Hence, comparing

these models with the model without integration will pro-

vide a more detailed view of whether it is their mecha-

nisms of integration or the psychometric function that

determines their performance. Second, as the model with-

out integration has the highest number of free parameters

of the models in this study it will serve to show how the

number of free parameters influences model performance

in terms of goodness-of-fit and validation error differently.

As such it serves as a baseline model with maximal

complexity.

The psychometric function, U(S; c, r), is here the

Gaussian cumulative distribution function. It returns the

probability of a /da/-response as a function of the stimulus

level, S¼ 1,…, 5, where S¼ 1 indicates a clear /ba/ and

S¼ 5 indicates a clear /da/. The psychometric function has

two free parameters: the threshold parameter, c, denoting the

0.5 threshold and the standard deviation, r, which deter-

mines the slope of the function. Hence, the psychometric

function models the response proportions for five data points

using two free parameters. For audiovisual stimuli, the stim-

ulus level, SAV¼ 1,…, 5, is determined by the stimulus level

of the auditory component of the stimulus while the slope

and threshold depend on the visual stimulus. Technically,

this model can also be constructed so that the visual stimulus

component determines the stimulus level while the slope and

threshold depend on the auditory stimulus but, for simplicity,

this model is not included in the current study. The complete

model thus consists of seven psychometric functions: one au-

ditory, one visual and five audiovisual. As each function

contains two free parameters, the model has 14 free parame-

ters. The way in which the visual stimulus influences audi-

tory perception in this model does not reflect a perceptual

integration process, which is why the model is referred to as

a model without integration.

The psychometric function can be interpreted as a model

of the underlying perceptual process (Gescheider, 1997).

According to this model observers base their responses on a

scalar internal representation value, x, of a stimulus feature

that distinguishes /ba/ from /da/. If the value of the internal

representation exceeds the threshold, c, the observer responds

/da/. Otherwise the observer responds /ba/. The mapping of

the stimulus onto the internal representation is stochastic due

to additive noise. The values of x are thus distributed accord-

ing to the normal probability density function, u(x; l, r) with

mean l¼ S. The probability of responding /da/ is the proba-

bility of x exceeding the threshold, x> c, which is given by

the integral

ð1
c

uðx; l; rÞ ¼ Uðl; c; rÞ ¼ UðS; c; rÞ:

The psychometric function, thus allows us to transform

response probabilities to probability densities on a continu-

ous internal representation. This is of great interest because

cross-modal integration of continuous internal representa-

tions of stimulus features such as spatial location or size has

been successfully model by the MLE model (Alais and Burr,

2004; Ernst and Banks, 2002).

2. Early MLE

In the MLE model, the distributions, uA and uV, of the

auditory and visual internal representation values, xA and xV,

are assumed to be independent. Therefore, the maximum

likelihood estimate of the corresponding audiovisual distri-

bution uAV is the normalized product of the auditory and vis-

ual probability densities, uA and uV. This product is also a

Gaussian distribution with a mean, lAV, which is a weighted

sum of the means, lA and lV, of the distributions, uA and

uV. The weights, wA and wV, are given by the expressions

wA ¼ rA=ðrA þ rVÞ and wV ¼ rV=ðrA þ rVÞ. Note that the

weights are mutually dependent since wA¼ (1–wV). The pa-

rameter, r ¼ r�2, denotes the precision. The more precise,

or reliable, modality is thus given greater weight. This is

known as the information reliability principle and is in ac-

cordance with many observations in studies of multisensory

perception (Andersen et al., 2004; Alais and Burr, 2004;

Ernst and Banks, 2002). The precision, rAV, of the audiovi-

sual distribution is given by the (unweighted) sum of the reli-

abilities, rA and rV, of the auditory and visual distributions.

Hence, integration of information always leads to a more

precise estimate according to the MLE model.

Inherent to MLE is the assumption that the auditory

and visual internal representations are one and the same.

Hence the threshold, c, should be the same for the auditory

and visual internal representations, which it is not in the

model without integration. Alignment of the representations

and thresholds can be achieved by noticing that U(S; c, r)

¼U(S� c; 0, r). This transformation has no effect on the

psychometric function but it implies a shift of the mean,

lA¼ SA – cA and lV¼ SV – cV, of the probability density

functions, uA and uV. This aligns the auditory, visual, and

hence also the audiovisual internal representations so that

the threshold is zero for all of them. It also contains an im-

portant constraint on the early MLE model: just as the stim-

ulus levels, SA and SV, are fixed at integer values from 1 to

5, so are the means of the distributions within a modality

evenly distributed with a distance of 1 between them. It
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thus only takes two free parameters, cA and cV, to determine

the means of the five auditory and five visual distributions.

This is illustrated in Fig. 1. The early MLE model thus has

four free parameters; two for the auditory and two for the

visual psychometric function.

3. The weighted model

In early MLE, the reliability, r, of the auditory and vis-

ual modalities determines their weight, w. The weighted

model releases this constraint and assigns a free parameter to

the weight. The standard deviation of the audiovisual proba-

bility density function is given by summing of variances

r2
av ¼ w2

ar
2
a þ w2

vr
2
v .

There are several reasons for why the weight given to

each modality would not be determined (entirely) by its

reliability. First, early MLE assumes that the distance

between stimulus levels is identical for auditory and visual

stimuli. If this assumption is violated the auditory and vis-

ual internal representations are scaled differently and it is

not possible to determine the standard deviation of the audi-

tory and visual probability densities relative to one another.

This difference in scale will thus require an additional free

parameter and it can be shown that adding this free parame-

ter to the early MLE model makes it equivalent to the

weighted model. Another reason is that stimuli in one mo-

dality may distract attention from the other modality. This

could mean that the information in one modality is more

reliable for unimodal stimuli, when attention is focused,

than for bimodal stimuli, when attention is divided

(Andersen et al., 2005). The weighted model can take this

effect into account.

4. The FLMP

In the FLMP, audiovisual integration is based on

response probabilities (or, equivalently, fuzzy truth values).

If Pa and Pv denote the auditory and visual response proba-

bility, respectively, then the audiovisual response probability

is given by the normalized product of Pa and Pv,

Pav ¼
PaPv

PaPv þ 1� Pað Þ 1� Pvð Þ :

Applied to the UCSC corpus, the FLMP requires 10 free pa-

rameters—five for the auditory response probabilities and

five for the visual response probabilities.

Note that as the audiovisual probability distribution is

based on the normalized product of the auditory and visual

probability distributions, the FLMP can be interpreted as

MLE based on a categorical internal representation (bino-

mial in this case, multinomial in the general case of more

than two response categories). Therefore, integration occurs

after categorization and the FLMP can thus be considered as

being based on late MLE.

5. Gaussian late MLE model

Early MLE has the potential advantage that the con-

straints imposed on the experimental design—using stimuli

evenly spaced on a continuum—are incorporated into the

model. The FLMP does not have this potential advantage.

Any difference in the performance of the two models can

thus be due to this as well as on the different ways (early vs

late) they implement MLE. It is, however, possible to con-

struct a late MLE model that contains a continuous internal

representation. In this model, the auditory and visual

response probabilities are calculated from the psychometric

function exactly as in early MLE. The audiovisual response
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FIG. 1. (Color online) Illustration of the early MLE model. Upper axis: Example auditory (A) and visual (V) psychometric functions. Lower axis: Probability

density functions of auditory (A) and visual (V) internal representation values corresponding to the psychometric functions in the upper axis. Each stimulus

level in the upper axis determines the mean of a distribution in the lower axis. Examples are shown by lines connecting the axes. Note that the even spacing

between stimulus levels in the upper axis is reflected in the even spacing between the distributions in the lower axis. The means of the five auditory and five

visual distributions are thus determined by the auditory and visual thresholds, cA and cV, respectively. The example probability density function for the audio-

visual internal representation values is calculated from MLE integration of the solid auditory and visual density functions. The response probability (of a /da/

response) is given by the probability mass falling above zero. Examples are shown by shaded areas.
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probabilities are then calculated exactly as in the FLMP. This

model is here termed the Gaussian late MLE model because

it contains Gaussian noise in the early, continuous stage and

late MLE as the model of integration. The parameters of the

Gaussian late MLE model are the same as the parameters of

the early MLE model.

6. Summary of models

The five models are summarized in Table I. The data set

contains 35 data points (response proportions) for each sub-

ject (five auditory, five visual, and 25 audiovisual). In the

five models there are three ways of reducing this complexity.

First, the psychometric function (with no modeling of inte-

gration) reduces five degrees of freedom to two. Hence the

Gaussian model without integration reduces 35 degrees of

freedom to 2� 35/5¼ 14 free parameters. Second, modeling

integration (without a psychometric function) predicts the 25

audiovisual data points from the five auditory and five visual

data points. Hence the FLMP has 35 – 25¼ 10 free parame-

ters. Finally, including both the psychometric function and a

model of audiovisual integration predicts 35 data points

from two psychometric functions. The early and late MLE

models thus contain 2 þ 2¼ 4 free parameters. The weighted

model containing an additional free parameter for the weight

contains five free parameters.

C. Fitting and cross-validation

The five models were all fitted to the data from each

subject by minimizing the squared error between observed

response proportions and the model response probabilities

using the non-linear least squares solver from the MatlabTM

Optimization Toolbox. As this is an unconstrained solver,

constrained parameters were modeled as transformed uncon-

strained parameters. The weight, w, in the weighted model

and response probabilities, Pa and Pv, in the FLMP were

constrained to the range of 0 to 1 by applying a sigmoid

function to unconstrained parameters. Standard deviations,

r, were constrained to be positive by applying the exponen-

tial function to unconstrained parameters.

Every model was fitted with 100 random initial condi-

tions to minimize the chance of the optimization ending in a

local minimum. The RMSE was calculated as the square

root of the mean squared error for each subject. For each

model, the RMSE corrected for degrees of freedom, hence-

forth referred to as the corrected RMSE, was calculated by

dividing the RMSE by (Nd – Np)/Nd, where Nd denotes the

number of independent data points (35) and Np denotes the

number of free parameters.

Cross-validation was performed as a 35-fold leave-one-

out procedure in which the models were fitted to the data

from each subject separately. In each fold, the response pro-

portion for one stimulus was left out from the fit. The valida-

tion squared error was then calculated between the model

response probability and the observed response proportion

for the stimulus left out from the fitting. The validation

RMSE was then calculated as the square root of the across-

fold mean squared error for each subject.

To test the significance of the differences in validation

errors across models, the validation errors were subject to a

one-way repeated measures analysis of variance (ANOVA).

Post hoc tests were conducted in two ways. First, the

TABLE I. The parameters (pars.), their number (# pars.) and equations for the five models. PA, PV, and PAV denote response probabilities for auditory, visual,

and audiovisual stimuli, respectively. SA, SV, and SAV denote stimulus level for auditory, visual, and audiovisual stimuli, respectively.

Model Parameters Np Description Equations

Gaussian model

w/o integration

CA, rA

CV, rV

CAV, rAV

14 Thresholds and slopes for auditory, visual and

five audiovisual psychometric functions

Pa¼U(lA;0, rA)

Pv¼U(lV;0, rV)

Pav¼U(lAV;0, rAV)

lA¼ SA � cA

lV¼ SV � cV

lAV¼ SAV � cAV

Early MLE CA, rA

CV, rV

4 Thresholds and slopes for auditory and

visual psychometric functions

Pa, Pv, Pav, lA, and lV as in

the Gaussian model w/o integration

lAV¼wAlA þ wVlV

wA ¼ rA=ðrA þ rVÞ
wV ¼ rV=ðrA þ rVÞ
rA ¼ r�2

A ; rV ¼ r�2
V

rAV ¼ r�0:5
AV ; rAV ¼ rA þ rV

Weighted model CA, rA

CV, rV

wA

5 Thresholds and slopes for auditory and

visual psychometric functions

Weight parameters

Pa, Pv, Pav, lA, and lV as in

the Gaussian model w/o integration

lAV¼wAlA þ (1�wA)lV

rAV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

ar
2
a þ w2

vr
2
v

p

FLMP Pa, Pv 10 Auditory and visual response

probabilities

Pav ¼
PaPv

PaPv þ 1� Pað Þ 1� Pvð Þ

Gaussian late MLE CA, rA

CV, rV

4 Thresholds and slopes for auditory

and visual psychometric functions

Pa, Pv, lA, and lV as in the Gaussian

model w/o integration

Pav as in FLMP
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validation error of each model was compared to every other

model using a two-tailed t-test. Second, in another, less con-

ventional, way, the models were ordered according to their

validation error. Paired, one-sided t-tests were then performed

between consecutive models. This was done in order to con-

duct post hoc tests with a smaller number of independent

tests.

III. RESULTS

The results of the model fitting and cross-validation are

displayed in Fig. 2 as the RMSE, the corrected RMSE and

the validation RMSE. The models are ordered by number of

free parameters so that models with more free parameters

are to the left of models with fewer free parameters. The hor-

izontal dashed line indicates the expectation value for the

mean RMSE. The expectation value is calculated as the

standard deviation of the response proportion assuming that

the response count is distributed according to the binomial

distribution with the response probability estimated by the

observed response proportion.

As seen in Fig. 2, the differences in validation errors

between models appear to be rather small. However, the

ANOVA showed that the difference between the means of

the validation errors is highly significant [p< 0.001,

Greenhouse�Geisser corrected F(2.6, 209.4)¼ 34.8]. Post
hoc paired two-tailed t-tests showed that the validation error

of the early MLE model is significantly lower than the vali-

dation error of all of the other four models (p< 0.0002 for

each comparison). The validation error of the weighted

model is significantly lower than that of the late MLE, the

FLMP and the early Gaussian model without integration

(p< 0.02 for each comparison). The late MLE does not have

lower validation error than the FLMP (p> 0.9) but both the

late MLE and the FLMP has lower validation error than the

Gaussian model without integration (p< 10�6 for each com-

parison). When the models were ranked according to their

validation error, paired one-sided t-tests, confirmed this pat-

tern of significance. The p-values of these tests are displayed

in Fig. 2.

The goodness-of-fit of over-fitting models is highly sen-

sitive to small changes in parameter values. To test whether

this is the case for the models described here, a sensitivity

analysis was performed. For each subject a random number

ranging from –5% to þ5% of the parameter values was

added to the best fitting unconstrained parameters. The

RMSE was then calculated for these parameters. This proce-

dure was repeated 1000 times and the mean difference

between this RMSE and the RMSE of the best fit was calcu-

lated. This mean difference was small (<0.01) for all models

compared to the difference in RMSE between models.

IV. DISCUSSION

The first purpose of the current study is to evaluate the

early MLE model in comparison with the FLMP and the

three other models described above. The early MLE model

had the lowest validation error of the five models tested here

and the difference in validation error between early MLE

and the weighted model was highly significant. This finding

shows that early MLE is a promising new model of audiovi-

sual integration of speech.

However, this promise should be accompanied by words

of caution. MLE models, early or late, contain a very strong

constraint: the influence of each sensory modality depends

only on the reliability of that modality. Audiovisual integra-

tion of speech may however vary across individuals

(Magnotti and Beauchamp, 2014; Schwartz, 2010) beyond

what can be explained due to variability in unimodal percep-

tion. Schwartz (2010) introduced a weighted version of the

FLMP to account for this and showed that it performed bet-

ter than the unweighted FLMP when applied to the UCSC

corpus, the same data set as used here. The difference

between Schwartz’ findings and the findings in the current

study may be due to differences in the type of weighted

model and differences in the model evaluation methods. It is

also possible that the individual differences in integration

are distributed so that a majority of subjects integrate in

agreement with early MLE while a significant minority inte-

grates differently. Although early MLE performed signifi-

cantly better than the weighted model in the current study,

there was some variability across subjects and the weighted

model was actually better for 24 out of 82 subjects.

Furthermore, several results in the literature suggest that

audiovisual integration of speech can be influenced by the

state of the observer without a corresponding change in uni-

sensory perception (Alsius et al., 2005; Nahorna et al., 2012;

Tuomainen et al., 2005). These findings may require models
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FIG. 2. The across-subject average RMSE, RMSE corrected for degrees of freedom, and validation RMSE for each of the seven models tested. Error bars rep-

resent the standard deviation (not the standard error of the mean as it would be too small to be clearly visible).
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with a variable mechanism of integration such as weighted

models or the Bayesian models of audiovisual integration

suggested by Ernst (2006) and Shams et al. (2005).

So, how can the simple early MLE model perform well

in the current study? The answer may lie in limitations in the

data set. The single phonetic contrast, the limited number of

stimuli along the stimulus continuum, the single signal-to-

noise level and the lack of variation in the attentional state of

the observer do not reflect the richness of everyday speech

perception. Still, the data set has been influential and is not

significantly smaller than data sets typically used in the liter-

ature on perceptual and cognitive models. This may indicate

that the complexity of the data sets used to test models of

audiovisual integration of speech so far has not matched the

complexity of the models tested.

The weighted model and early MLE both had signifi-

cantly lower validation error than Gaussian late MLE. This

indicates that early integration reflects the mechanism of

integration better than late MLE as this is the only difference

between these two models.

Gaussian late MLE model did not have significantly

lower validation error than the FLMP. This indicates that

introducing the early continuous representation does not, in

itself, lead to much improvement. This is confirmed by the

FLMP having significantly lower validation error than the

early Gaussian model without integration. From this we also

learn that late MLE integration (Gaussian or FLMP) does

seem to capture some of the underlying mechanism of inte-

gration, only not as well as early MLE.

The second purpose of the current study is to show that

cross-validation effectively includes both goodness-of-fit

and model flexibility in model evaluation, and provides

meaningful selection of models. This is perhaps best seen by

comparing model selection based on the validation error

with model selection based on the corrected RMSE.

Unsurprisingly, the RMSE consistently favored models with

more free parameters. More importantly, this trend persisted

when the RMSE was corrected for the degrees of freedom.

Interestingly, this means that these measures did not favor

the FLMP, in contrast to previous findings (Massaro, 1998),

as the Gaussian model without integration, having the high-

est number of free parameters, had the lowest RMSE and

corrected RMSE. This trend stands in stark contrast to the

trend seen in the validation RMSE, which tends to favor the

models with the fewest free parameters. The models with the

more free parameters thus have low training errors and high

validation errors, which is the hallmark of over-fitting. A fur-

ther indication of over-fitting is that the RMSE was lower

than the expectation value for the FLMP and the Gaussian

model without integration. This suggests that these models

fit not only to the variability due to fixed effects but also to

variability due to the random effects.

The result of the sensitivity analysis indicated that all

models were fairly robust to small variations in parameter

values. Hence, although some models might over-fit in this

study they do not do so to the extreme degree that was seen

by Schwartz (2006) in a similar analysis of the FLMP. The

reason for this discrepancy may be that Schwartz conducted

his analysis on a different data set. This data set may have

contained more response proportions close to zero for which

the FLMP becomes highly non-linear and unstable.

That the early MLE is the best model of audiovisual

integration of speech in terms of the cross-validation RMSE

is a promising result. However, it may prove difficult to gen-

eralize it to more complex experimental designs that reflect

real-life speech perception more closely. The reason for this

is that whereas the continuous internal representation of

speech is assumed to be one-dimensional in the current

study, this is unlikely to be the case in general. Still, models

with multidimensional representations do exist (Ashby,

1992) and it may be possible to insert a mechanism of inte-

gration into them. Although this may prove challenging, it

also carries a promise: The inclusion of the experimental

design in model design can lead to a more interpretable

model with the dimensions of the model reflecting the per-

ceptual features of audiovisual speech. Early MLE also con-

tains a clear prediction for the effect of lowering the acoustic

signal-to-noise ratio. This should lead to an increase in the

variance of the Gaussian distribution in the auditory modal-

ity and increase the variability of responses across response

categories as has been seen in early studies (Miller and

Nicely, 1955). It should also lead to an increased visual

influence in the McGurk illusion, which has also been

reported (Sekiyama and Tohkura, 1991; Andersen et al.,
2001). The FLMP can make no such prediction, as it does

not parameterize the acoustic signal-to-noise ratio.

The conclusion of the current study is that cross-

validation shows that audiovisual integration of speech is

best modeled by the parsimonious early MLE model in the

UCSD data corpus. Whether more complex models, such as

multidimensional or weighted models, are required to model

audiovisual integration of speech in general will require

more complex data sets and is a task is left for future studies.
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