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ABSTRACT

After a review of the actuarial literature on the analysis disability income insurance (DII), this 

thesis develops a number of different models for the description of claim incidence and claim 

termination rates for holders of DII policies. Models developed include generalised linear models, 

parametric mixture models with both accelerated failure components and long run return to work 

probabilities, semi-parametric Cox Regression models and censored regression quantile models. 

The results from the various proposed models and their suitability as models of the disability 

process are compared and contrasted. Chapter 6 brings together the results of the modelling work 

presented in the earlier chapters and proposes new models for premium rating and disabled life 

reserving using multiple state model theory and flowgraph analysis.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction and Motivation

Between 1988 and 2001, the in-force annual premiums for Australian disability income 

insurance (DII) have increased from 180 million dollars to almost 1.1 billion dollars (Munich Re 

of Australia, Rice Kachor Research (2002)). This increase has occurred across both ordinary and 

superannuation linked lines of life insurance risk business. This sharp increase in the volume of 

DII business, and the inherent difficulty in calculating actuarially fair premium rates for this line 

of business, provided the motivation for the research presented in this thesis.

The calculation of a risk premium for an insurance contract requires an assessment of future 

expected cash outflows for an insurer that has entered into a portfolio of insurance contracts. In 

the case of DII, these cash outflows will be dominated by benefits payable to insured lives who 

subsequently become unable to work. They will also include a significant amount related to the 

expenses of selling and product administration. The actuary is required to assess the magnitude 

and timing of these uncertain future cash flows and, in turn, to recommend a premium rate, 

which will cover these future benefit payments and leave a contribution to the profit of the 

business, after allowance for investment income earned on premium income and associated 

reserves.
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Expenses play a particularly important role in the determination of premium rates for DII 

business. DII business is predominantly sold through insurance brokers and agents, and hence 

large initial expenses related to commissions are common. Once a DII contract has been signed, 

the renewal expenses (payable generally annually) are significantly lower than the expenses that 

the office faces in the first year after initial sale. It is therefore of interest for insurers to have a 

measure of the persistency, or renewal rates, for those insured lives who have purchased DII in 

the past. Higher renewal rates will lead to lower expenses on average each year and in turn can 

justify lower premium rates.

The largest and most uncertain future cash outflow in the management of DII business arises due 

to the payment of the insured disability benefits. Uncertainty in the amount of these cash flows 

stems from two sources: first, the occurrence of future disability for an insured life is uncertain; 

and second, the duration of a claim under a DII contract can vary from as little as one week to 

many years. It is common actuarial practice (Booth, 2000) to estimate the rate of disability onset 

using a claim incidence rate and to estimate the duration of claims using a set of estimated claim 

termination rates.

A number of morbidity tables have been produced, based on the disability experience of life 

offices, in various countries. These tables provide practising actuaries with a starting point for 

the assessment of their future liabilities associated with in force DII business. These tables 

include (Munich Re, 2002):

• The Manchester Unity Tables (covering a lengthy nineteenth century investigation in 

England);

• The Commissioner’s Disability Tables (CDT) 1964 (based on USA experience);
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The Commissioner’s Individual Disability Tables (CIDA) 1985; and

• The Australian Table IAD89-93.

The construction of the Australian Table and also some of the experience analysis performed in 

the UK will be reviewed in Chapter 2 of this thesis.

1.2 Contribution of this Thesis

This thesis proposes the use of a number of recently developed statistical methodologies to the 

actuarial pricing of DII business. Experience analysis of DII business overseas and in particular 

in Australia has up until now relied on statistical methods developed over thirty years ago. 

Multiple state modelling, exposed-to-risk and graduation methods along with actual vs expected 

analysis have formed the historical basis for the modelling of claim incidence and claim 

termination rates. These forms of modelling do not readily capture interactions that exist 

between the rating variable information available to DII providers. Historically popular methods 

rely on subdividing DII data prior to performing analysis to enable faster computation of output. 

Faster computing speeds and increased statistical literature that makes use of these methods, 

enables considerably more data analysis to be performed on DII policy and claim data.

This thesis will highlight the role that a number of recent statistical procedures have to play in 

the analysis of DII business. In particular, mixture modelling in survival analysis, generalised 

linear modelling, censored regression quantiles and flowgraphs will all be considered and their 

efficacy and suitability for morbidity modelling will be investigated and discussed. The 

modelling will involve statistical estimation of underlying rates of claim incidence and claim
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termination. The results of this modelling will then be used with existing actuarial pricing 

theories to develop suitable premium rates and reserving strategies for DII business.

1.3 Structure of Thesis

Chapter Two will provide a review of the most important literature relating to the analysis of DII 

business from an actuarial and statistical viewpoint. This will place the research that follows in 

an appropriate context.

Chapter Three will report the results of two generalised linear model analyses of DII claim 

experience presented to the Institute of Actuaries of Australia membership in 2002 and 2003. 

The termination rate analysis in that chapter was published in the Australian Actuarial Journal 

and the incidence rate analysis formed part of the Proceedings of the 2003 Biennial Convention 

of the Institute of Actuaries of Australia.

Chapter Four continues the analysis of claim termination rates with the use of survival models 

for long term survivors (Mailer and Zhou, 1996). Survival analysis provides a natural modelling 

framework for the analysis of disability claim durations. Both claim termination rates and 

probabilities of failure to recover are modelled in terms of various sets of underlying covariates 

or rating factors.

Chapter Five presents the results of a study based on the use of censored regression quantile 

analysis, (Portnoy, 2003). Regression quantiles provide a method for the diagnosis of 

heterogeneity in residuals resulting from regression analysis. In particular, censored regression 

quantiles enable the analyst to assess potentially varying impacts of covariates across different 

quantiles of the distribution of the dependent variable. In the case of DII analysis we can, for
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example, assess whether the impact of smoker status on claim termination varies according to 

the duration that a claimant has already been receiving DII benefits. This is an important feature 

of the analysis because the calculation of disabled life reserves depends critically on the impact 

of covariates at a range of claim durations.

Chapter Six ties together some of the work presented in earlier chapters and develops actuarial 

pricing strategies using both multiple state models and flowgraph models.

Chapter Seven concludes the thesis. A summary of the main findings of the research is given 

along with recommendations for future research.

Acknowledgement

The data that has been used in this thesis has been provided by the Institute of Actuaries of 

Australia Life and Risk Practice Committee and is used with their permission.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Disability Income Insurance Models

The development of a number of different models for the description of disability income 

insurance (DII) has taken place over the last two decades. The models proposed have varied 

considerably in terms of underlying assumptions, the amount of underlying statistical rigour and 

the extent of data used in their development. This section will review a number of the key papers 

on DII, and place the research work developed in this thesis in context.

2.1.1 Continuous Mortality Investigation Reports

The Continuous Mortality Investigation Bureau (CMIB) of the Institute of Actuaries and the 

Faculty of Actuaries in the UK has a sub-committee devoted to analysis of Permanent Health 

Insurance (PHI) data. PHI is a very similar product to DII products sold in Australia and Income 

Protection (IP) Insurance sold in the United States. The sub-committee has produced a number 

of reports (CMIR2 (1976), CMIR4 (1979), CMIR7 (1984), CMIR9 (1988), CMIR12 (1991), 

CMIR18 (1998) and CMIR20 (2001)). In terms of methodological development, CMIR12 

(1991) was the most substantial of these reports. This report established the multiple state model
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as a key method for the pricing and reserving in respect of DII policyholders. The multiple state

model used in the analysis is shown in Figure 2.1 below.

DEAD

ABLE
Insured is able to work 

and earn income

ILL
Insured is unable to work 

- either full or partial 
disability.

Figure 2.1: Multi-state model used for Disability Income Insurance Modelling. A 
policyholder may move between the 3 states, with death an absorbing state

CMIR 12 begins by explaining the link between transition intensities and conditional 

probabilities for the state occupied by policyholders. Discussion then turns to the graduation of 

claim recovery and mortality intensities. In order to simplify the analysis and without loss of 

generality, Male Standard lives are the only lives considered in the report. After considerable 

experimentation, the complete formula used for the graduation of recovery rates derived in 

CMIR 12 was

p Ttsz=r.{a + b(\ + q .max(4-wz ,0) ) .JZ(Y-50)}e- ‘'ß  (2.1)

where a, b, c, p, q and s are constants and

p y+Z i is the transition intensity (or hazard rate) for recovery of a life aged y + z who has been 

in the disabled state for a continuous period of z years

y is exact age (in years) at the date of falling sick, and
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for z<5,Y = y

T = y + z - 5  forz>5; 

z is duration of sickness (in years) and

Z = z for z < 1,

Z = \ + s ( z~\ )  f o r l <z <5 ,

Z = 1 + 4s for z>5

(  i A
and for deferred periods of 4, 13 and 26 weeks, we have r = min^/? + — (wz - d ) ( \ - p ) , \

so that r — 1 if wz > d + 4 for deferred period d, expressed in weeks. Note also that w is a 

constant equal to the number of weeks in a year, taken as 52.18 in this analysis.

Equation (2.1) represents a stochastic model for the transition intensity from the disabled state to 

the able state. The model is fit using slices of data from the CMIR12 investigation where the 

slices contain recovery data for lives with specified age, deferred period and duration of 

disability characteristics. The above formulation was determined after various diagnostic checks 

on relationships present in the data. In particular, a plot of the log of the duration of claim effect 

(on claim termination rates) against the square root of duration produced a graph that was

approximately linear and decreasing. This finding explains the e term in the above 

graduation formula for termination rates. If all deferred periods are combined and the impact of 

increasing age on claim termination rates is plotted against age, an approximately linear, 

decreasing relationship is also found. There was some evidence that the observed reduction in 

claim termination rates for older policyholders varies depending on the deferred period of the
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underlying DII policy. This phenomenon suggests the need to model an interaction between age 

and deferred period in the description of claim termination rates -  this interaction is explored 

more fully in Chapter 3, which focuses on generalised linear models and claim termination and 

incidence rates. This interaction is dealt with in equation (2.1) by the term Vz (T -50) included

in the slope coefficient. There is also evidence of lower recovery rates during the periods soon 

after claim payments commence. These are dealt with in equation (2.1) by the reduction factor, 

r, which only applies for the period 4 weeks after the expiry of the deferred period. Evidence of 

an increased sensitivity of claim termination rates to age during the first four weeks of disability 

is dealt with by the g.max (4 -  wz,0) term in equation (2.1).

The graduation formula (2.1) was fitted using the method of maximum likelihood. A general 

discussion of maximum likelihood in the context of actuarial experience analysis is given in 

Forfar et al (1988). An experience analysis is the term used by actuaries to describe the 

investigation of a set of statistical data that is derived from business transactions over a long 

period. The most common experience analysis performed by actuaries is an investigation into 

mortality rates using data on deaths derived from payments of sums insured under endowment 

and term life insurance business. The use of maximum likelihood estimation means implies 

asymptotic standard errors for the estimated parameters in (2.1) are readily available. In 

addition, Bayliss (1991) tested the suitability of these standard errors by a method of simulating 

the experience and parameter-fitting process. His results were very close to those found using 

the asymptotic results based on maximum likelihood theory.

Next, we turn to the treatment of the able and ill to death transitions shown in Figure 2.1.The 

analysis of mortality rates using disability income insurance data is difficult due to the lack of 

data on deaths for insured lives who are initially in paid employment. However, the report does
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find evidence of a “hump-backed curve” relating the mortality experience to duration of 

disability. That is, mortality rates appear to be higher at shorter durations of disability claim (less 

than 20 weeks), regardless of the age of the claimant. The impact of increasing age on mortality 

rates is really only evident for ages greater than 50, where there is some evidence of the usual 

positive relationship between age and mortality rates.

The graduation of sickness inception intensities is also considered in CMIR12 (1991) by Waters. 

The method used is to separate data on exposure to the risk of claim inception and number of 

claims by age and deferred period. Separate graduations are performed for each of the four main 

deferred periods, namely 1 week, 4 weeks, 13 weeks and 26 weeks. Again experimentation with 

a range of functional models led to the use of

ax = exP {/(■*)}> (2.2)

where a x represents the transition intensity (or hazard rate) for the transition from the able state

to the disabled state, x represents age and/  is usually a polynomial of degree three. This form of 

mathematical function and underlying model used for claim inceptions suggested the use of 

generalised linear modelling as a natural modelling approach. Higher sickness inception 

intensities were predicted for shorter deferred periods. In addition the impact of age was to 

increase the claim rates for both the youngest and oldest ages of the insured lives. That is, the 

sickness inception intensities were highest for those insured lives younger than 30 or older than 

55. The impact of age on sickness inception intensities was greatest for the one week deferred 

period. The sickness inception intensities for the 26-week deferred period policies showed little 

evidence of a relationship with age -  the graduated sickness inception intensities were about 

10% across the entire working age range.
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CMIR12 (1991) next provides details on the computational procedures for determining both 

probabilities of movement between, or occupancy of, various states in the three state model in 

Figure 2.1. In addition the approximation of monetary functions using numerical integration 

methods was also described. Chapter Six of this thesis considers numerical methods for dealing 

with the semi-Markov nature of the transitions from the disabled state and the associated 

calculations of premium rates and disabled life reserves. Chapter Six will also demonstrate a 

new use of flowgraphs to calculate DII premium rates.

2.1.2 Significant Contributions to the Disability Income Insurance Modelling Literature

Many other models have been proposed in the literature for the pricing and reserving of 

disability income insurance. Gregorius (1993) describes the methodology used in the 

Netherlands. The potential annuity of benefits payable up until retirement under a DII contract is 

broken into two separate parts, the A-cover and the B-cover. The A-cover includes all payments 

to insureds for the first year of disability. A simple multiplicative model is used to calculate the 

risk premium in respect of the A-cover. The risk premium is calculated as

P ( i J , k )  = B.a(i).b(j).c(k),  (2.3)

where the functions a, b and c relate to the level of each of the three main risk factors, namely 

waiting period, age and class of profession. The premium rate calculation for the B-cover is 

more complicated due to the greater uncertainty in estimating appropriate tariffs for potentially 

long duration claims. Actuarial methods based on a probability model of future periods of 

disability for insureds are typically used. It is important to note that the model uses duration 

dependent recovery rates and also that mortality rates for active and disabled lives are not 

differentiated. Gregorius concedes that there are theoretical reasons for believing in differential
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mortality rates for active and disabled lives, however, there is inadequate data in the Netherlands 

DII market to assess this theory. In order to deal with the duration dependent recovery rates, 

Gregorius proposes a refinement of the usual three state model used in DII analysis. The 

disabled state is divided into six states where each state denotes disability for a different amount 

of time. To simplify the calculations, a model without return, where transitions out of the 

disabled state are ignored is proposed for the determination of single premiums. This 

simplification clearly introduces significant bias into the analysis proposed by Gregorius.

Taylor (1971) introduced a Markov model with multiple states for duration of disability. This 

paper was key to the development of stochastic analysis in morbidity studies. This work was 

developed further by Haberman (1984).

Segerer (1993) describes the actuarial treatment of the disability risk in Germany, Austria and 

Switzerland. In these countries, and a number of other European centres, the method of pricing 

and reserving for DII is based on multiple decrement tables (Neill, 1977). The decrements are 

state dependent. For active lives, the two decrements of primary interest are mortality and 

disability. For those lives in the active state, the two decrements are recovery and mortality. The 

formula used in Switzerland for a net single premium is

__1_
N - N .

• — i

x+t+l/2  ’f x + f  ' S x+t '^x+ t+ V 2:n -t-l/2 \  ’ (2.4)

where Nx and Dx are standard actuarial commutation functions evaluated using national 

mortality rates and 3% per annum interest, ix is the incidence rate of disability at age x, gx is 

factor that reflects the degree of the disability and a 1-̂  represents the expected present value of 

an annuity of 1 dollar per annum payable while a life aged x remains disabled with payments
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continuing for a maximum period of n years. Interestingly, the disabled life reserves are 

calculated based on standard life annuity values, reduced by a factor to allow for the fact that 

payment is made contingent on both survival and continuing disability. The formula used for the 

calculation of disabled life reserves is

V '=1.02 a —,1 x x+t:n-t\ W 5 /w+i (2.5)

where

/ x (jc-15)2
f i x )  = 0.3 + 0.7--------

v ' 50

Hert, f(x)  is the age-dependent deduction factor and tV ‘ represents the amount of money that an

insurer should hold in reserve in respect of a DII policy that was bought t years ago by a life that 

has just become disabled and was aged jc at the outset of the policy. At age 15, the factor is 0.3 

and the factor increases continuously until it reaches unity at age 65. An age-dependent 

deduction factor of one implies equality between the standard life table annuity value and the 

disability annuity. The approaches adopted in Germany and Austria are slight variations on the 

approach in Switzerland. See Segerer (1993) for details. The underlying disability incidence and 

continuance rates used in Equations (2.4) and (2.5) are based on industry average statistics split 

by age and duration. Following tariff reform in parts of Europe in the early 1990s that impacted 

premium calculations, large loadings of up to 50% were added to previously used rates to bring 

them closer into line with industry experience.

The use of multiple state models in actuarial science has extended beyond just premium rating 

and reserving for DII. Hesselager (1994) developed a Markov model for loss reserving in 

general insurance. The model that he proposed, containing four states is shown below.
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0~IBNR 3~Settled

-Reported 
No Case 
Reserve

2~Reported
Case

Reserve

Figure 2.2 General Insurance Claim History Model

From the time when a claim occurs to the time that the final payment on the claim is made, the 

claim is thereafter assumed to move through the various states of the model shown in Figure 2.2. 

Claim occurrence leads to the introduction of the claim in state 0. Subsequently the insurer will 

be notified of the claim and the claim will move into either State 1 or State 2 depending on the 

anticipated size of the final claim. It is common for large case reserves (or case estimates) to be 

established in respect of potentially large claims soon after the claim is reported to the insurer. In 

such a case, the claim would move into State 2. If no case reserve is established when the insurer 

is notified of the claim, then the claim moves into State 1. It is likely that when the claim moves 

from the IBNR (incurred but not reported) state to one of the reported states that a (partial) claim 

payment will be made in respect of the claim. As the claim develops, particularly in the case of 

long-tail lines of general insurance business such as professional indemnity insurance or 

workers’ compensation insurance, it is possible that the case reserve may change considerably 

and may even be reduced to zero. In these cases, transitions between states 1 and 2 are possible. 

Finally the claim will be settled, after which no subsequent payments will be made in respect of 

the claim. The movement of the claim to State 3 will involve a final partial payment to complete 

the claim payment process. Historical claim records of an insurer can provide the timing and
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amount of the various payments made on transition between the states of the model in Figure 

2.2. These data can be used to derive both probability distributions for payments made on 

transitions between states and the transition intensities for movement between states. The 

expected future payments on a claim that occurred at time u in the IBNR state is

where ymn (£) is the average payment made on transition from state m to state n, p0m («,£) is the 

probability of a transition from state 0 to state m in the time between u and g and Amn (£) 

denotes the transition intensity between states m and n at time £. Under the assumption of a 

Poisson process for claim arrivals and settlements, the transition intensities are constant and 

therefore the calculation of the transition probabilities between states can proceed by solving the 

usual Kolmogorov’s equations, (see for example, Pitacco et al (1999)).

Originally, actuarial pricing and reserving theory was developed on the basis of the calculation 

of expected present values of cash flows. The argument put forward for relying solely on 

deterministic calculations was that this approach was justified for large portfolios of insurance 

business due to significant pooling. More recently, this approach has been justified, in some 

cases, by the use of stochastic models. Norberg (1996) develops ordinary differential equations 

for moments of present values of benefits commonly found in life insurance. Norberg (1991, 

1992) defines a set of notation in relation to a multistate life insurance policy. The policyholder 

can reside in any of J states at time t. These J states may include healthy, sick, lapsed, totally 

and permanently disabled (TPD) and dead. Let / /  be an indicator variable for whether the

policy is in state j  or not at time t, and let Ntjk denote the number of transitions from state j  to

(2 .6)
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state k during the time interval (0, t]. The payment function B generated by the policy is assumed 

to be of the form

d B = Y j I!dB;+YJbildN!\  (2.7)
j j*k

where each B ’ is a deterministic payment function specifying payments due during sojourns in

state j  and each bjk is a deterministic function specifying payments due upon transition from 

state j  to state k.

The present value of future benefits less premiums, that is the actuarial reserve, at time t is

- f  (2.8)v, ,

where v, is the standard discount factor. Norberg presents a theorem for finding the gth 

conditional moment of the present value in (2.8), given the information available at time t, that is

V qU) = E
( i n  Y

—  f  vdB
U  r J

1
= i ,

J
(2.9)

where V q(J) represents the qth quantile of the distribution of the present value of future

payments under a DII contract, that is a contract that continues to make payments to this life 

while he resides in the disabled state, state j.

The key result is that the functions Vt(q)J are determined by the differential equations
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(b/k)rV,{q-r)k. (2 . 10)
d_
dt

=  (qS/ +ß! ) v ^ i -qb:v^-')l
k * j  r- 0 V ^  >

This thesis will further explore moments of present values of projected benefits less premiums in 

the case where the assumptions of the Norberg model do not apply -  in particular in relation to 

disability income insurance where Markov transition intensities are invalid. Instead, semi- 

Markov transitions from the ill state to the able state and the associated complications for 

premium rating and reserving will be considered in this research.

2.1.3 Australian Industry Table

During 1995, the Graduation Sub-Committee of the Disability Committee of the Institute of 

Actuaries of Australia produced an industry table of claim incidence and claim termination rates 

based on the experience of Australian disability income insurance policyholders in the years 

between 1989 and 1993 inclusive. The table is now presented as an Excel spreadsheet model and 

is used to varying degrees by many of the large Australian life insurers which sell DII.

The Australian industry table (IAD89-93) was created for a number of reasons. The main 

reasons were to facilitate premium rate calculations, to automate the profit testing of a set of 

premium rates, to allow experience analyses, to facilitate the calculation of best estimate policy 

liabilities and solvency policy liabilities. Due to the relatively small amount of data available on 

this product during the period for which data was gathered, only aggregate (that is smoker, non- 

smoker and “unknown” smoker status combined) for 2 week and 1 month deferment period 

tables were created. For termination rates, male occupational classes A, B and C were combined, 

again because data from individual occupational classes at that time were too sparse to permit a 

reliable graduation.
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The data was graduated by fitting formulae so that the chi-squared measure of goodness of fit 

(Benjamin and Pollard (1993)) was minimised. The formulae used for the graduation were 

chosen after considering the shapes apparent in the CIDA (US experience based) tables. Given 

that many Australian insurers, at the time of preparation of IAD89-93, used the CIDA tables as a 

base and then made appropriate adjustments to fit their own experience, it was decided to form 

the IAD89-93 table without making any reference to the CIDA tables. This approach would 

mean that the Australian derived table would not contain any systematic bias due to country- 

specific conditions and could be used by insurers independently of other internationally derived 

morbidity tables.

In the construction of IAD89-93, separate curves were fitted, varying with age, for male accident 

incidence rates and male sickness incidence rates. The formula used for accident incidence rates 

was a cubic function of age:

F (x) = A + Bx + Cx2 + Dx3, (2 .11)

where x represents the age last birthday at date of disablement. The accident incidence rate data 

is calculated using the number of accident induced new DII claims divided by the number of 

years that lives are observed in the able state, with a DII policy, and therefore are exposed to the 

risk of accident. Similarly for male sickness incidence rates, the formula adopted was

F(x)  = A + Bx + CDx. (2.12)

Age was grouped into nine quinquennial age bands centred on ages 22, 27, 32, ..., 62. Separate 

graduations of claim incidence rates were performed for each of the four occupational classes A,

18



B, C and D and for each of the 2 week and 1 month deferment periods. Other rating factors such 

as smoking status and other more unusual deferment periods had insufficient data, (for example 

six month deferred periods,) to warrant graduation. The report on the construction of the IAD 

table does provide some guidance to users on how to adjust the published rates for each of these 

factors, though this advice is more indicative than comprehensive.

For the determination of female incidence rates for both sickness and accident, sufficient data 

again was not available to warrant a reliable graduation of these rates. Instead a decision was 

made to adjust the male rates by a factor which varies according to age, deferment period, cause 

of claim (accident or sickness) and occupation class. After considerable experimentation, the 

formula chosen was

where/denotes female incidence rates, m denotes male incidence rates, c is the claim cause, X is 

age last birthday at disablement, o represents the occupational class and w represents the waiting 

period (either 2 weeks or 1 month). The quantities Ec X o w are the fitted factors varying by cause,

age, occupation class and deferment period. The Ec X o w factor is an adjustment factor that 

applies to predetermined accident incidence rates and was modelled using

where Faow is a cubic polynomial as defined in (2.11) and for ages below M ow the formula 

used was

(2.13)

E.'a,X ,o,w (2.14)
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female rate = male rate at age Mo w.Fao w [ \ - G a w( X - M o w)\. (2.15)

The rationale behind the use of Equation (2.15) for low ages was to account appropriately for the 

“accident bump” present in the male incidence rate curve and to allow a straight line to be fitted 

for ages below Mow. Similar adjustments were made to the male sickness incidence rates to 

estimate the female sickness incidence rates.

The monthly equivalent termination rates for each of the 2 week and 1 month deferment period 

claims were graduated using the formula

YXd = Ad{\ + B(l.X)-,d = 1 to 6 or 7, (2.16)

where YXij  is the modelled value for the number of claims closing for lives aged x with claim 

duration d divided by the number of months that lives are aged x and disabled with duration d 

months and X is the age last birthday. The values of d from 1 to 6 or 7 correspond to the 

durations as presented in the 1995 Disability Committee Report of the Institute of Actuaries of 

Australia. These are the periods ending at 1,3, 6, 12, 18, 24 and 36 months from disablement, 

with the 1 month duration only being relevant for the 14 day deferment period. Note that Aj 

values represent the monthly termination rates at age zero. Also note that the Bj factors were 

only fitted for duration 1 month and duration in excess of 1 month. The interaction effect 

between age and claim duration in determining claim termination rates was only modelled based 

on whether the duration was less than or greater than one month. The effect of this formula is to 

fit straight lines across ages at each duration.
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Monthly equivalent rates are then converted to termination rates of the required duration by use 

of the formula

TX J = l - [ l - Y x,df ,  (2.17)

where Pd is the number of months in the period to which the required termination rate relates. 

Equation (2.17) is used to convert monthly termination rates to annual termination rates, Tx,d■ An 

annual termination rate for claim data can be derived by dividing the number of claims that close 

with duration d and age X into the total number of years that lives were disabled at age X and 

with duration d.

Partial claims are allowed for in the IAD rates by counting them as the appropriate fraction of a 

full claim based on the benefit amount paid as a proportion of the insured amount. The IAD 

table investigation indicated that there was some evidence of an anti-selection effect at younger 

ages and a selection effect at the middle ages. These effects were thought insignificant and were 

ignored in the construction of the table.

It should also be noted that a number of product actuaries for DII working in Australia have 

noted considerable divergence between their own experience and the rates published in the 

Australian IAD table over the last ten years. Waters (2004) presents a comparative analysis of 

the experience of UK DII policy experience using techniques from Credibility Theory. Many 

insurers adjust the IAD rates to conform to their own experience while other insurers continue to 

base their projections on the US-based CIDA tables adjusted by factors relating to age, duration 

and smoker status.
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2.2 Actuarial Use of Generalised Linear Models

Actuaries working in both life risk and general insurance business have recently made extensive 

use of generalised linear models. General insurance actuaries now routinely use GLMs for 

pricing a range of both long and short-tail lines of business.

Brockman (1992) describes the use of GLMs in motor vehicle insurance pricing and illustrates 

some of the diagnostic procedures commonly employed to ensure underlying model assumptions 

are not seriously violated. Haberman (1996) summarises the use that actuaries have made of 

GLMs in a very accessible paper.

The first use of GLMs by actuaries in the life insurance domain appears to have been by 

Renshaw (1991). His paper, “Generalised Linear Models and Actuarial Science”, describes how 

models traditionally used by actuaries in the graduation of mortality rates can be viewed as 

special cases of GLMs. The traditional Gompertz and Makeham functions for describing the 

variation in the force of mortality by age and the Wilkie model, for mortality, are recast as 

GLMs. For example, the Wilkie model for mortality is

exp (r)s)
1 + exp (*?,)’

J -1  ^

where f)x = Y j ^ j x^
j= 0

(2.18)

where qx is the model predicted value of the one-year death probability for a life aged x. It is

clear that this model related to modelling the death probability using a GLM with a binomial 

error distribution and logit link function -  that is, to a logistic regression model.
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One of the early significant mathematical models of disability rates was developed by Miller and 

Courant (1974). GLMs were first used in connection with disability income insurance by 

Renshaw. Renshaw (1995) describes the use of generalised linear modelling for graduating 

transition intensities in the well-known multiple state model used to describe the dynamics of 

disability income insurance. This model was shown in Figure 2.1.

Chapter 3 of this thesis will consider both claim incidence and claim termination rates for 

disability income insurance.

The 1997 Report of the Disability Committee of the Institute of Actuaries of Australia (IAAust) 

highlights the significance of rating factors in describing the incidence rates of disability. It was 

suspected that some or all of these rating factors might be significant in the explanation of 

termination rates, and GLMs have been employed in the next chapter to quantify this 

relationship in a multiple regression framework.
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CHAPTER THREE

GENERALISED LINEAR MODELS AND DISABILITY INCOME
INSURANCE

3.1 Motivation

'The common feature in all recent reports of disability experience has been the deterioration of 

claims termination rates. By this, we refer to lower claim termination rates leading to longer 

average duration for DII claims. Of course, the adequate analysis of termination rates requires 

very significant amounts of data. In this study, we have had access to claims data submitted to 

the Institute of Actuaries of Australia Disability Committee over the period 1980 to 1998, 

covering 106,000 claims.

This major dataset has been analysed using conventional approaches, (namely actual over 

expected) and using more modem Generalised Linear Modelling techniques. Also presented is a 

comparison of a stochastic approach to the setting of reserves for outstanding claims liabilities 

with the corresponding deterministic method.

1 This chapter was the basis for a paper that appeared in the Australian Actuarial Journal (2002) 

-  “Disability Claims -  Does Anyone Recover?” This chapter also formed the basis of an invited 

presentation that was given at the Institute of Actuaries of Australia Biennial Convention in 

2003.
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3.2 Data

The Institute of Actuaries of Australia Life and Risk Committee supplied the Australian 

National University with their claims database for the period 1980 to 1998. This database had all 

identifiers relating to company or policy removed before access was given to the university for 

research. The database contained records relating to 106,000 individual claims and their various 

characteristics.

Each claim record contained the following information in relation to the claimant

Rating Variable Rating Variable

Country of purchase of the DII contract Benefit Rate

Disability Definition Benefit Type

Gender Medical Evidence

Deferment -  Accident Coverage Type

Deferment -  Sickness Contract Type

Date of Policy Commencement Cause of Claim

Benefit Period -  Accident Smoker Status

Benefit Period -  Sickness Benefit Proportion

Occupation Date Disability Commenced

Date of Birth Date Claim Ceased

Expiry Age

Table 3.1 Table of Covariates for GLM Analysis

Some of these characteristics were summarised to reduce the number of variables and without 

overly sacrificing data quality. The summarised characteristics were
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Summarised Rating Variables

Deferment

Claim cause

Coterminus benefits

Proportionate benefit

Benefit rate

Age at claim

Table 3.2 Summarised Rating Variables

Note that these summarised rating variables provide a simpler way of dealing with the variables 

given in Table 3.1. When the data was prepared, a matrix was used where lives that have a DII 

contract with the same characteristics are grouped together. Total exposure and total number of 

recoveries for these lives are then calculated. The models that follow in this chapter are 

developed using the rating factors given in Table 3.1.

The detailed specifications used to determine these summarised characteristics are set out in 

Appendix 3.1. Certain records were excluded from the analysis due to missing data or in order to 

match the primary data selection criteria used by IAAust Disability Committee. The exclusion 

criteria are also set out in Appendix 3.1. After these records were excluded, 101,000 claims with 

875,000 months of exposure to the risk of returning to work remained for subsequent analysis.

Not all claims remained in the original Life and Risk Committee database from commencement 

to termination. Some claims commenced prior to 1980, other claims remained open at the end of 

1998 and some companies only contributed data during some of the years between 1980 and 

1998. Nevertheless each claim contributed to the exposure for the months for which data was
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available for it and contributed to actual terminations only if it terminated in the time period 

when data was available for it. Claim cessation due to death, recovery or lump sum payment was 

defined as a claim termination. Claim cessations due to benefit expiry were not treated as a 

claim termination. This choice was made because our aim is to develop a model of claim 

termination rates. Claim durations were taken at monthly intervals from the date disability 

commenced regardless of the deferment period. The first month was labelled as duration zero. In 

the actual over expected analyses, only benefits classified as “Full” were included, except for the 

comparison of “Partial” and “Full” benefits.

3.3 Comparison of Actual vs Expected Claim Terminations

The IAAust Life and Risk Committee most comprehensively reports claim termination 

experience by using average duration of claims for the first three years of claims. This approach 

is reasonable given that each report concentrates on the four years covered. However, as noted in 

those reports, average claim duration needs to be interpreted with care as it can change due to 

fluctuations in the level of new claims volumes without concomitant change in underlying 

termination rates.

During this chapter, we have concentrated on actual over expected claim terminations (by claim 

numbers) as the measure of termination rate experience. For the calculation of expected 

terminations we have used IAD89-93.

The results are presented as an index which is the reciprocal of the actual over expected ratio so 

that as results deteriorate, the ratio increases.

The data used in subsequent analysis includes only claims that satisfied the following criteria:
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• Individual coverage (excluding Business Overheads); and

• Contract type not Cancellable; and

• Not a partial benefit at any point in the claim payment history.

Detailed actual over expected results are set out in Appendix 3.2. The more important 

conclusions are summarised in the following. In this section only a one-dimensional view is 

taken of the experience, as there are simply too many possible cells to allow a reasonable 

multidimensional analysis to be conducted using actual over expected techniques. However, the 

section dealing with the generalised linear model does, of course, allow for a multivariate 

approach.

It will be noted that the data for the period 1989 to 1993 does not have an index of 100%; that is, 

the data does not agree with IAD89-93 for the same period. This discrepancy is due to three 

sources of difference between the data provided to the university and the data originally used by 

the IAD Graduation Sub-Committee of the Institute of Actuaries of Australia.

• The data provided to the authors was of later origin than that used to derive IAD89-93 owing 

to subsequent revisions and submission of additional data by contributors;

• The analysis in this paper has been based on summarised data for certain variates; and
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• IAD89-93 uses an “artificial” approach to setting termination rates at longer durations, in

particular a simple extrapolation of the trend in termination rates is used.

Since the comparisons used here are based on the relative values of the “index”, the small 

difference between our 1989 to 1993 results and IAD89-93 is not significant in the interpretation 

of the results.

3.3.1 Experience over Time

In this analysis, the “year” refers to the year of exposure (and claim termination). The results 

from Table 3.3 are displayed using a scatterplot along with a lowess smooth of the points in 

Figure 3.1 below.

Comparison of IAD and Data Claim Termination Rates

Figure 3.1: Comparison of Actual and Expected Experience over Time where expected 

experience is derived using the IAD89-93 table

This analysis confirms the general deterioration of experience over time but interestingly 

suggests that in the last two years under study (1997 & 1998) some improvement may be
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evident. Is this a real improvement or, like the periods 1986 to 1988 and 1990 to 1992, merely a 

random fluctuation before the presumed underlying deterioration resumes its course?

Because of this very material change in aggregate experience over time, the results of the 

analyses by each of seventeen covariates are presented in a two dimensional form to show the 

experience over time as well as how it varies with the value for each individual characteristic. 

The only exceptions to this presentation style are experience by benefit size, age at claim, 

duration and year of policy commencement as the number of individual values for each 

characteristic are too great to allow such an exposition.

3.3.2 Summary of Results

Y e a r E x p e c te d A c tu a l In d e x

1980 19 26 74%

1981 79 92 86%

1982 226 261 87%

1983 515 651 79%

1984 629 715 88%

1985 763 826 92%

1986 1202 1146 105%

1987 2090 2381 88%

1988 2142 2580 83%

1989 2352 2513 94%

1990 3261 2681 122%

1991 4895 4625 106%

1992 5148 5082 101%

1993 6447 5736 112%

1994 6960 6369 109%

1995 7737 5840 132%
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1996 8166 5658 144%

1997 7490 5862 128%

1998 5477 4830 113%

65600 57874 113%

Table 3.3: Comparison of Actual and Expected Experience over Time

Table 3.2 shows the results for each characteristic presented as the Index for the total period 

ignoring differences by year. The experience by year for each characteristic is to be found in 

Appendix 3.2. This table identifies which values for which characteristics are material in 

impacting the termination experience.

Characteristic Value Index

Gender Male 112%

Female 125%

Occupation A 126%

B 111%

C 107%

D 111%

Deferment 7 days 66%

14 days 108%

30 days 125%

90 days 245%

Definition Own / Any 2 years 110%

Own 126%

Any 95%

Benefit Type Level 105%

Increasing 119%

Medical Evidence Medical 83%

Non Medical 101%
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O ther 126%

C overage Indiv idual 113%

B usiness O verheads 126%

C ontrac t T ype Level -  G uaran teed 114%

Level 109%

Stepped  -  G uaran teed 97%

Stepped 116%

C ance llab le  -  Level 85%

C ance llab le  -  S tepped 103%

N o C laim  B onus N o 114%

Y es 113%

S m oker S tatus N o D ifferen tia tion 107%

N on S m oker -  C hecks 107%

N on S m oker 113%

S m oker 127%

C laim  C ause U nknow n 115%

W 69%

X 147%

Y 190%

A cciden t 101%

C oT erm inus Y es 112%

N o 117%

B enefit P eriod 2 years 102%

5 years 115%

E xpiry 127%

L ifetim e 123%

B enefit P roportion Full 113%

Partia l 196%

Table 3.4 Index of Termination Rates by Characteristic
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3.3.3 Some Initial Conclusions

The results summarised by Figure 3.1 and Tables 3.3 and 3.4 suggest that the characteristics 

used in IAD89-93 to predict claim termination rates, namely deferment, gender and occupation, 

do not capture significant differences in experience that are evident due to the presence of other 

rating factors. This suggests that the classification using the current industry table contains 

considerable heterogeneity. Indeed, usual industry practice in the application of the IAD89-93 

table for Australian life insurers varies considerably. Some insurers apply a proportion (rating up 

or down) factor to the rates provided in IAD89-93. The proportion is calculated using a 

comparison of aggregate experience to the rates published in the IAD industry table. Other 

Australian insurers disregard the Australian table on the basis that it was constructed using 

insufficient experience. They instead base their rates on the CIDA85 tables produced in the 

United States and then apply a set of internally developed factors relating to age, smoker status 

and occupation class to bring the US table rates into line with the particular office experience.

In addition, not only is the experience deteriorating to an extent where IAD89-93 is materially 

overstating the likely termination rates, but also its shape for various characteristics may be 

materially and commercially significantly different to that shown in the experience.

3.4. GENERALISED LINEAR MODEL OF CLAIM TERMINATION RATES

3.4.1 Background to Generalised Linear Models

Generalised linear models (GLMs) were first developed by Neider and Wedderbum (1972). 

GLMs extend the basic linear regression model in a number of critical aspects. The standard
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linear regression model, when used for the prediction of a dependent variable, Y  (for example

claim termination rate), with a number of independent variables, Xj ,  X 2,.... ,Xp, (for example

occupation class, duration of claim, age, smoker status) can be described as follows:

1. A random component: each value of Y  is normally distributed with expected value /u (which 

may depend on covariates) and constant variance a1 2.

2. The systematic component: a set of independent variables Xj,  X 2, . . . ,XP which combine to

p

produce a linear predictor rj given by 77 -  ^  x fß r  where the ßj  are regression coefficients,
1

usually estimated by the least squares principle.

3. The “link” between the linear predictor and the mean of Y is n  = t]

The GLM extends this basic model in two significant ways:

1. The dependent variable, Y, may come from an exponential family distribution rather than

only the Normal distribution. Exponential family distributions includes most of the common 

probability distributions used by actuaries in general insurance, and includes the Normal, 

Poisson, Binomial, Gamma and Inverse Gaussian distributions as special cases. The 

advantage of using this broader class of distributions for the response variable is that it 

allows the flexibility of a wider range of possible relationships between the variance and the 

mean of the dependent variable, and allows for features of the underlying error distribution 

such as asymmetry, heavy tails, etc.
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2. The link function in (3) above can be any monotonic differentiable function. Common link 

functions include the identity link, the log link, the inverse link and the logit (or log-odds) 

link. The link function allows non-linearity in the relationship between Y and the covariates.

Having fit a GLM, the process of determining whether predictors are adding value to the model 

is also different to the process used in multiple regression or traditional linear modelling, insofar 

as the so-called deviance is used as a measure of fit rather than the more traditional “variation- 

explained”.

To assess the adequacy of the fit of a GLM we need to define the deviance statistic. The 

deviance reflects the discrepancy between the actual values of the dependent variable and the 

fitted values relating to the dependent variable in a likelihood sense. The formula for the 

deviance is

The deviance is the scaled difference in log-likelihoods between a perfectly fitting (or saturated) 

model and the model for which the deviance is being calculated.

(3.1)

where (f) is the dispersion parameter and i ( y ,</)^ is the log-likelihood function for the observed

values.
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The addition of independent variables to a GLM inevitably reduces the deviance. The amount of 

this reduction in deviance (in other words the size of the step taken towards the perfectly fitting 

model) may be used as a measure of whether that particular independent variable should be 

retained in the model.

3.4.2 Advantages of Using Generalised Linear Models for Claim Termination Rates

Some advantages of using GLMs in describing termination rates are that:

• they enable the impact of changing the level of a rating factor to be quantified in a way 

that does not consider the change in other rating factors that will accompany such a 

change in rating variable. For example, the 1997 Disability Report considers the impact 

of occupation class on claim duration. The report states that claim duration for 

occupation class A is longer than that for occupation classes B to D. The GLM enables 

you to isolate out the impact of the change in occupation class from the changes in other 

variables which occur when you move from occupation class A to D. For example 

females are rarely in occupation class D, and secondly occupation class A lives are 

usually more severely disabled before they are unable to work than is the case for, say, 

occupation D lives; note, however, that such interpretations may struggle fo find real- 

world analogues, as changes in individual covariates often occur.

• they allow the calculation of predicted value of the termination rate for a particular life 

with a specific set of rating variables. GLMs also permit the calculation of the variance 

of fitted values;
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• they enable suitable modelling of the variance of the expected termination rate (unlike 

conventional linear modelling) to more adequately reflect real-world experience;

• the predicted termination rates vary smoothly meaning that premiums and reserves 

calculated from the model will also vary smoothly for continuously varying covariates. 

They won’t necessarily be smooth for, say, binary covariates.

• the results for termination rates can be summarised as the result of a single model rather 

than through the provision of a large set of different tables. This compactness allows for 

easy calculation and also provides a very efficient means of communicating such 

information.

3.4.3 Discussion

The GLM fitted in this research used data from the whole period 1980 to 1998 but using only a 

limited set of characteristics in order to facilitate the actual calculations by reducing the number 

of cells analysed. A GLM fit to the full set of characteristics using only data from the latest data 

period, 1995 to 1998, has been derived for claim incidence rates. The results of this analysis are 

shown later in this chapter.

The fitting of a suitable GLM requires multiple choices as regards the distribution of the errors, 

the link function, the predictors to use and whether any transformation of those predictors is 

desirable. In addition, it is worthwhile to also investigate interactions which may exist between 

the predictor variables.
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A number of different GLMs were fit to the termination rate data. After considerable

experimentation and assessment of residual plots, it was decided that the Poisson error structure 

was the most appropriate for describing the mean-variance relationship inherent in the data. It 

was comforting to note that this error family is the same one commonly used for claim 

frequencies when the claims experience of many short-tail lines of general insurance business 

are modelled.

The data selection for the final GLM chosen used claims which had a deferment of 14 or 30 

days, did not have an Unknown claim cause and had Individual coverage. There were 83,000 

such claims with 675,000 months of exposure. The following characteristics were retained in the 

final model:

Rating Variables Rating Variables

Definition Claim Cause

Gender Deferment Period

Occupation Class Benefit Rate

Smoker Status Year of Exposure

Age at Claim Claim Duration

Table 3.5 Retained Covariates

There were 275,000 cells in the data, after allowing for all multi-way classifications of the above 

ten rating variables.

It should be noted that unlike for the actual over expected analysis, the data used to fit the GLM 

included both “Partial” and “Full” benefit claims.
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In order to give greater weight to those observations in which we have more confidence in, the 

GLMs were fit using the exposure for each rating factor combination as weights in the fitting 

algorithm.

The results in Appendix 3.3 show that all of the following rating factors aid significantly in the 

modelling of termination rates: age at date of claim, cause of claim, duration of claim, gender, 

occupation class, smoker status, deferment period, benefit rate and the calendar year at the date 

of possible claim termination. In addition a significant duration and age interaction was found. 

The dataset includes all claim terminations so that at every possible duration only certain claims 

will actually be observed to terminate.

From the output in Appendix 3.3, we can calculate the fitted values for claim termination rates. 

The prediction formula is

Fitted Claim Termination Rate = exp(32.3 - .008AgeClaim + 0.371(ClaimCauseW) + ... -

.00652(AgeClaim*Sqrt(Duration)))

Standard errors of the fitted coefficients are provided in Appendix 3.3. It is clear from Appendix 

3.3 that the model retains a significant residual deviance. This result is not surprising given that 

the nineteen years of data was included in the analysis and only a limited number of rating 

factors were included as explanatory variables. The interpretation of deviance residuals is 

explained in McCullagh (1989). A number of other variables and transformations of existing 

variables have been explored in the context of claim incidence rates.

Graphical and other comparisons of modelled termination rates versus actual data points are 

given for the claim incidence rates presented later in this chapter. This analysis will build a
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model for claim termination rates (and incidence rates) based only on the most recent five years 

of claim data. This reduced dataset will allow a considerably improved fit to the data to be 

achieved than was possible in the full analysis.

Other interesting results of the analysis include:

• The benefit rate has a statistically significant, negative impact on the rate of claim 

termination;

• there is a statistically significant interaction between duration and deferment period in 

determining the termination rate. At shorter durations the predicted termination rate is 

significantly higher for the shorter deferment period. After durations of approximately 8 

months this difference becomes non-significant;

• there has been a statistically significant decline, over time, in termination rates when 

aggregated across all levels of the rating factors. The decline in termination rates is still 

statistically significant even after the impact of all other rating factors has been allowed 

for.

An alternative to the second method of fitting an interaction term between deferment period and 

duration is to use “break-point predictor terms”. This has been employed successfully for the 

UK data by Renshaw(1995). The idea is to include terms of the form (Duration -  3)+ which are 

only positive if the duration is greater than 3 and otherwise are zero. Such terms enable the 

rating factors to exhibit a non-constant linear relationship (after allowing for the link function) 

with the termination rate. They prove useful in modelling the lower termination rates that one 

observes at the very shortest durations.
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3.5 STOCHASTIC CLAIMS RESERVING

Using the GLM output shown in Appendix 3.3, we aim to find the approximate distribution, 

using simulation, of the required reserves in respect of a DII portfolio to ensure relevant 

probabilities of adequacy. The analysis is for the average of 100 claims that are new at the date 

of valuation with a monthly disability payment of $2600. The graph below was generated for the 

case of a male aged 40, in occupation class A, with a deferred period of 2 weeks who became 

disabled because of an accident.

Reserve Requirements for $2600 Monthly Claim at Duration Zero

Percentage

Figure 3.2: Reserve Requirements to obtain varying probabilities of adequacy

In the above analysis, allowance has been made for deteriorating claim termination rates and for 

interest at 6% per annum, compounding continuously.

The calculation above requires the use of two probability distributions. First, note that the fitted

value for the natural log of the termination rate from the GLM is asymptotically normally
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distributed. This is because the fitted value is a linear combination of coefficient estimates and

constant covariate values and the coefficient estimates are maximum likelihood estimates, which 

are themselves asymptotically normally distributed. The delta method was used to approximate 

the variance of the actual fitted values for the termination rates. The number of terminating 

claims, given the termination rate, was then simulated from a binomial distribution.

Table 3.6 shows the reserves required to give a particular probability of the reserve being 

adequate using the simulation approach described above.

Probability Claim Reserve at 

Start of Claim

Increase Over 

50%

50% 33,764

75% 36,749 9%

90% 39,692 18%

95% 41,180 22%

99% 45,357 34%

Table 3.6: Reserve Requirements by Probability of Adequacy

The reserve calculated using a traditional deterministic approach would be approxiamtely at the 

50% probability level in Table 3.6.

3.6 A GLM for Claim Incidence Rates

A GLM with Poisson error and logarithmic link function was fitted to the claim incidence rate 

data. The final model chosen was of the form
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E [log (Y)] = log(exposure) + /?0 + ̂  A*;+ X A x ix j*  (3.2)
7=1 selected i ,j ',k=\

where Y denotes actual number of claims multiplied by benefit percent, the Xj are covariates 

associated with holders of DII contracts and the ß } are regression coefficients derived using

maximum likelihood estimation (McCullagh and Neider (1989)). The exposure is the amount of 

time that disability income insurance holders are exposed to the risk of becoming disabled and is 

recorded in days. The xpCj terms are interaction terms. These will be discussed further in this 

section.

This model is fit using an offset for log(exposure). The offset ensures that the model is fit with a 

regression coefficient for log(exposure) equal to one. This means that the model can be rewritten

as

£(log(lncRate)) = ,#0 + V /?.*,.+ £  A  x ix j*  (3-3)
7=1 selected i , j ,k=\

where IncRate denotes the incidence rate of claims measured on a per day basis.

The coefficients of the fitted model for each variable and for the statistically significant 

interaction terms are shown below in Table 3.4. A description of each covariate is given in 

Appendix 3.1. The fitted intercept for the model is -5.281746.

43



C ovariate C oeffic ient

Estim ate

Z-Score C ovariate C oeffic ient

Estim ate

Z-Score

G e n d e r 0 .2 7 4 7 4 5 2 .93 B e n a m o u n t6 0 .211641 6 .10

A ge 0 .2 4 6 0 1 5 15.81 B e n a m o u n t7 0 .2 5 4 1 9 9 5 .52

V A  §e
-2 .3 1 0 6 9 7 -18 .6 3 S m o ke r 0 .1 5 6 6 8 5 10.61

O c cu p a tio n B 0 .9 2 1 9 4 4 7 .49 A ids 0 .2 2 2 8 7 9 15.04

O ccu p a tio n C 1.805061 22 .77 D u ra tio n l 0 .2 0 7 5 7 3 12.56

O ccu p a tio n D 2 .0 0 0 9 9 9 23 .57 D u ra tio n 2 0 .0 8 3 4 7 7 5 .89

D e fin itio n 2 -0 .058871 -4 .03 Neb 0 .0 6 7 3 6 7 4 .69

D e fin itio n s -0 .0 4 3 3 1 9 -0 .89 C o n t ra c t -0 .3 2 1 5 3 2 -4 .76

D e fin itio n 4 -0 .2 1 9 7 1 3 -4 .58 C o n tra c t2 -0 .0 7 8 0 4 0 -3 .99

D e fin itio n s -0 .356431 -8 .86 C o n tra c t3 0 .1 4 9 0 4 5 3 .06

D e fin itio n s -1 .1 5 8 2 6 8 -1 .46 M e d ica l -0 .2 0 5 6 1 7 -6.11

D e fe rm e n t2 0 .906221 1.20 A g e *O ccu p a tio n B -0 .0 0 9 2 1 9 -3 .38

D e fe rm e n t3 -0 .0 4 8 2 2 2 -0 .06 A g e *O ccu p a tio n C -0 .0 1 9 7 5 2 -11 .39

D e fe rm e n t4 -2 .5 4 0 3 5 5 -3 .09 A g e *O c c u p a tio n D -0 .0 2 1 1 8 2 -11 .42

D e te rm e n ts -2 .6 1 2 0 5 5 -3 .20 G e n d e r*  A ge 0 .0 0 4 8 7 0 2 .40

D e te rm e n ts -4 .3 7 1 0 6 6 -3 .14 G e n d e r*O ccu p a tio n B -0 .1 7 5 8 5 8 -2 .95

44



Deferm ent7 -3 .533438 -1.52 Gender*OccupationC -0 .474074 -9.73

D eterm ents -3 .333802 -6.72 Gender*OccupationD -0 .563529 -7.08

Benperiodl -1 .078854 -13.62 Age*Deferm ent2 -0 .025920 -1.96

Benperiod2 0 .01 9 6 2 8 8 1.39 Age*Deferm ent3 -0 .023097 -1.75

Benam ount2 0 .0 4 4 0 5 4 2.20 Age*Deferm ent4 0.011881 0.80

Benam ount3 0 .1 7 4 3 7 8 9.06 Age*Deferm ent5 0 .0 0 2 8 7 7 0.20

B enam ount4 0 .2 0 0 4 3 0 9.88 Age*Deferm ent6 0 .0 2 7 7 2 0 1.08

Benam ount5 0 .2 3 5 9 0 0 8.73 Age*Deferm ent7 -0 .011860 -0.25

Table 3.7 Incidence Rate GLM Coefficients

The above table shows that thirteen interaction terms are included in the model for claim 

incidence rates. Interaction terms add to the flexibility of the model and enable a more realistic 

description of the underlying data. To consider an example, we see in the above table that the 

gender by age interaction is statistically significant. This means that the impact of age on 

incidence rates is different dependent on the value taken by gender in the model. The gender by 

age interaction term has a positive coefficient meaning that for a unit increase in age the 

resulting predicted incidence rate increases more when gender is 1 (female) than when gender is 

0 (male).

The Poisson error structure employed in this model models the variance to increase in line with 

the size of the fitted value (mean). A diagnostic check was conducted on the model results to
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ensure that this proportional increase in variance with the fitted values was a reasonable 

assumption for this data. The test indicated that there was no evidence of overdispersion.

Another important characteristic of this analysis was the treatment of the smoker variable. In the 

original data, approximately 3.5% of the exposure was not classified as either smoker or non- 

smoker. One approach to the modelling is to ignore this 3.5% of the data. It is not possible to fit 

the GLM using a subset of the required covariates for certain data points unless a specific 

imputation technique is put into place. One imputation method is, therefore, to attempt to predict 

the value of the missing smoker value by employing logistic regression with smoker as the 

response. This analysis fits a regression model where the response variable is the probability that 

the policyholder was a smoker and the explanatory variables are the other covariates including 

claim information available in the data. The logistic regression methodology ensures that the 

fitted values for the probability of being a smoker are on the range from 0 to 1 and hence can be 

used as valid covariates in the fitted GLM.

3.7 Comparison of GLM Results with IAD89-93

An analysis of the main differences between both the smoothed incidence rates, fitted by the 

GLM from Section 3.6, and the existing rates from IAD89-93 is given in this section.

Table 3.8 compares the smoothed annual incidence rates using the GLM from Section 4 and the 

rates from IAD89-93 for 2-week deferment period policies.
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Occupation A Occupation B Occupation C Occupation D

Age 22 (IAD) 1.8889% 4.0643% 5.4911% 5.7715%

Age 22 (GLM) 1.6661% 3.3402% 6.4850% 7.5635%

Age 27 (IAD) 1.7401% 3.4906% 4.9069% 5.3417%

Age 27 (GLM) 1.5625% 2.8803% 5.4560% 6.2806%

Age 32 (IAD) 1.8441% 3.2985% 4.8465% 5.4489%

Age 32 (GLM) 1.6318% 2.8408% 5.1082% 5.8771%

Age 37 (IAD) 2.1474% 3.4744% 5.1656% 5.9374%

Age 37 (GLM) 1.8429% 3.0734% 5.2040% 5.9217%

Age 42 (IAD) 2.6645% 4.0039% 5.8266% 6.7658%

Age 42 (GLM) 2.1955% 3.5029% 5.5956% 6.3472%

Age 47 (IAD) 3.4226% 4.8797% 6.7981% 7.8987%

Age 47 (GLM) 2.7603% 4.1802% 6.2835% 7.0909%

Age 52 (IAD) 4.4471% 6.1014% 8.0550% 9.3069%

Age 52 (GLM) 3.6175% 5.2749% 7.4288% 8.3044%

Age 57 (IAD) 5.7930% 7.6759% 9.5784% 10.9671%

Age 57 (GLM) 4.9656% 6.6699% 8.9480% 10.1073%

Age 62 (IAD) 7.5205% 9.6170% 11.3560% 12.8620%

Age 62 (GLM) 7.0301% 8.8306% 11.2966% 13.0054%

Age 67 (IAD) 9.4457% 11.7093% 13.2333% 14.8477%

Age 67 (GLM) 10.2979% 12.4523% 14.8078% 17.2813%

Table 3.8 I AD vs GLM incidence rates for two-week deferred period
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Table 3.9 compares the smoothed incidence rates using the GLM from Section 3.6 and the rates

from IAD89-93 for the one-month deferment period policies.

Occupation A Occupation B Occupation C Occupation D

Age 22 (IAD) 0.5856% 1.1248% 2.2204% 2.2662%

Age 22 (GLM) 0.6874% 1.3810% 2.6977% 3.2659%

Age 27 (IAD) 0.5358% 1.0037% 1.9808% 2.1374%

Age 27 (GLM) 0.6578% 1.2108% 2.2889% 2.7232%

Age 32 (IAD) 0.5947% 1.0333% 1.9486% 2.1758%

Age 32 (GLM) 0.6861% 1.1913% 2.1743% 2.5688%

Age 37 (IAD) 0.7290% 1.1581% 2.1002% 2.3628%

Age 37 (GLM) 0.7853% 1.2686% 2.2314% 2.6056%

Age 42 (IAD) 0.9400% 1.3428% 2.4340% 2.7153%

Age 42 (GLM) 0.9504% 1.4557% 2.4194% 2.8215%

Age 47 (IAD) 1.2517% 1.6247% 3.0144% 3.3107%

Age 47 (GLM) 1.2068% 1.7347% 2.7519% 3.1868%

Age 52 (IAD) 1.6995% 2.1345% 3.9507% 4.2741%

Age 52 (GLM) 1.5995% 2.1383% 3.2830% 3.7740%

Age 57 (IAD) 2.3454% 3.0658% 5.4235% 5.7822%

Age 57 (GLM) 2.2051% 2.7362% 4.0876% 4.6466%

Age 62 (IAD) 3.2603% 4.6743% 7.6233% 8.0478%

Age 62 (GLM) 3.1133% 3.4621% 5.1661% 5.9687%

Age 67 (IAD) 4.3157% 6.5442% 9.9974% 10.6651%

Age 67 (GLM) 4.4394% 4.6979% 6.9509% 7.4860%

Table 3.9 IAD vs GLM incidence rates for one month deferred period
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The key message from the above comparison is that the incidence rates predicted by the GLM 

and the incidence rates in IAD are not materially different. Nevertheless, some differences are 

evident that are worthy of comment.

The difference between the IAD and the GLM rates is greatest at age 67 in the above table 

however, of course, the amount of exposure at this age group is very small. It should also be 

noted that a global comparison between the IAD 89-93 table and the rates predicted by the GLM 

cannot be made from the above table, since this would involve consideration of incidence rates 

for particular classes of business with different levels of exposure.

3.8 Goodness of Fit Analysis

In this section the fit of the GLM described in Section 3.6 is studied. A simple check of the 

goodness of fit is achieved by comparing the crude incidence rates with the rates predicted from 

the GLM. A chi-squared goodness of fit test on a three-way table of data is given. The table used 

includes age, occupation and is for males. The data in the table is aggregated across all other 

rating variables employed in the model. The chi-squared goodness of fit test provides a useful 

check as to the adequacy of the fit of the model. It is commonly used to assess the adherence of 

crude mortality rates to modelled mortality rates in the construction of life tables both in 

Australia and overseas.

Table 3.10 shows the value of the fitted minus the crude incidence rates for the GLM described 

in Section 3.6.
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O c c u p a tio n  A O c c u p a tio n  B O c c u p a tio n  C O c c u p a tio n  D

Age 22 -0 .73% -1.52% -1.47% -1.80%

Age 27 -0 .06% -0.20% -0.41% 0.10%

Age 32 -0 .15% -0.19% 0.16% 0.46%

Age 37 -0 .18% -0.14% 0.15% 0.01%

Age 42 -0 .15% -0.27% 0.12% -0.42%

Age 47 -0 .24% 0.03% 0.14% 0.51%

Age 52 -0 .13% 0.17% -0.04% -0.58%

Age 57 -0 .13% 0.12% -0.07% -0.24%

Age 62 -1 .75% -2.43% -2.83% 2.03%

Age 67 2.75% -2.06% 3.47% 2.45%

Table 3.10 Goodness of Fit Analysis

It is clear from the above table that the fitted rates at the higher ages do not adhere as closely to 

the crude rates as at younger ages. This phenomenon is partly due to the lack of data at the 

higher ages and therefore the greater volatility in the reported claim incidence rates at these ages. 

In the construction of IAD89-93, the authors note that the higher ages were often ignored in the 

fitting process and that constraints on the fitted values were used to ensure that the more volatile 

rates at these ages did not affect the fitted rates too much.
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A global test of the fit of the model using a chi squared test indicates that the fitted rates 

generated by the GLM adhere sufficiently closely to the crude rates, though some differences 

may be of practical significance to businesses using IAD.
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CHAPTER FOUR

ANALYSIS OF CLAIM TERMINATION RATES

This chapter investigates statistical models for the description of claim termination rates. A 

claim is considered to be terminated when the claimant returns to work. Other sources of claim 

termination include changes to benefit levels, expiry of the benefit period, the payment of a 

lump sum, and death. One of our aims is to derive premium rates and to develop appropriate 

reserving methodology, within a multiple state model framework, and so it is only the rate of 

return to work that is used when determining claim termination rates. The number of deaths in 

the dataset is very small because the population under consideration are mostly of working age. 

Mortality rates will therefore be based on standard life tables with suitable adjustments rather 

than the smoothed mortality rates implied by the dataset. This approach will be discussed further 

in Chapter Six.

4.1 Data

Claims which began in 1995 were extracted from the IAAust database. These claims were 

followed until termination or the end of calendar year 1998, whichever occurred first. The table 

below gives a description of the rating variables which were included in the data along with the 

name of S-Plus variables that were created for use in the statistical modelling.
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F ield D escrip tion V ariab les (S-P lus  

N am es)

D u ra tio n D u ra tio n  o f  the  c la im  (re c o rd e d  in d a y s) . T h is  is 

th e  n u m b e r  o f  d ay s fro m  w h e n  th e  s ic k n e ss  b e g a n  

u n til re c o v e ry  (o r c e n so r in g ) , le ss  th e  d e fe rm e n t 

p e rio d .

d u m 2

A g e A g e  at th e  d a te  o f  c la im  c o m m e n c e m e n t age

T e rm in a te A n  in d ic a to r  o f  w h e th e r  the  c la im  w as  o b se rv e d  

to  te rm in a te  o r  w as  c e n so re d

te rm in a te

D isa b ili ty

D e fin itio n

O w n  o c c u p a tio n  fo r  w h ic h  th e  in su re d  p e rso n  is 

re a so n a b ly  su ite d  by  e d u c a tio n , tr a in in g  o r 

e x p e r ie n c e , o r a n y  o c c u p a tio n  a f te r  an  in itia l 

p e rio d . ( In d ic a to r  v a ria b le  fo r  an y  o c c u p a tio n  

a f te r  in itia l p e rio d )

p o ld e sn e w 3

S ex In d ic a to r  v a ria b le  fo r  g e n d e r; M a le  =  1. s e x l

O c c u p a tio n  C la ss O c c u p a tio n  is g ro u p e d  in to  fo u r  lev e ls ; A , B , C  o r 

D  as d e sc r ib e d  in IA A u s t D isa b ility  R e p o rts

o c c u p B , o c c u p C , 

o c c u p D

F re q u e n c y  o f  

B e n e f it  P a y m e n t

C la s s if ie d  as (1 ) w e e k ly , (2 ) m o n th ly  o r  (3 ) 

a n n u a lly

b e n h p l ,  b e n h p 2

B e n e f it  R a te M o n th ly  b e n e f it  ra te  in  d o lla rs b e n ra te

B e n e f it  T y p e L e v e l o r In c re a s in g  B e n e f its . ( In d ic a to r  v a ria b le  

fo r  in c re a s in g  b e n e f its )

b e n ty p n e w 2

M e d ic a l

E v id e n c e

M e d ic a l E x a m  re q u ire d  o r  A u to m a tic  

A c c e p ta n c e . ( In d ic a to r  fo r  m e d ic a l e x a m  

re q u ire d )

m e d e v id l

C o n tra c t T y p e L ev e l P re m iu m s  o r  S te p p e d  P re m iu m s . ( In d ic a to r  

v a r ia b le  fo r  L ev e l P re m iu m s)

c o n tty p e n e w l

S m o k e r  S ta tu s S m o k e r  o r  n o n -sm o k e r . ( In d ic a to r  v a r ia b le  fo r  

sm o k e r)

s m o k e m e w

S ic k n e s s  o r 

A c c id e n t

S ic k n e ss  c la im  o r A c c id e n t re la te d  c la im . 

( In d ic a to r  is fo r  s ic k n e ss  )

s ick

D e fe rre d  P e r io d C la s s if ie d  a c c o rd in g  to  defpdO  (0  d ay ), d e fp d l 

(b a se  lev e l an d  d e fe rm e n t p e r io d  b e tw e e n  1 an d

defpdO

d e fp d 2
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27 days), defpd2 (28 to 89 day deferment period) defpd3

and defpd3 (deferment period in excess of 90

days)

Table 4.1 Potential Covariates for Claim Termination Rate Analysis

Of the 8863 claims recorded, 7771 (88%) related to terminated claims, the remainder being 

censored. The most common cause of censoring was that the claim reached the end of 1998 and 

was continuing at that time. There were a small number of claims that were lost at the end of 

each of 1995, 1996 and 1997 and that are unable to be followed further. This issue arose due to 

changes in claim codes adopted by companies that provided this data to the IAAust Life and 

Risk Committee at the end of particular calendar years. Most of these claims were able to be 

traced by matching claims from one calendar year to the next on the basis of date of birth, date 

of entry to the policy, sex, occupation class and smoker status, however a small proportion (less 

than 1 %) were unable to be successfully matched.

The age profile of claimants ranged from 17 to 70 with an average age of 40. The distribution of 

ages for new claimants was approximately bell shaped.

Of the 8863 claimaints included in the dataset, 2409 (27.2%) were in occupation class A, 667 

(7.5%) were in occupation class B, 3165 (35.7%) were in occupation class C, and 2622 (29.6%) 

were in occupation class D. (Report of the IAAust Disability Committee, 1997).

Just over 50% of the claims related to disability definitions where any occupation applies in 

determining whether the claim can continue after an initial period.
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Males account for 87% of the data, while monthly benefit payments are clearly the most 

common, also accounting for 87% of the data. Note also that 54.7% of the claimants had chosen 

benefits that increase in line with inflation. Only 5% of the claimants would have required 

thorough medical examinations before claim payments commenced. Level premiums accounted 

for 13.6% of the data, the remainder relating to stepped premiums. The smoker prevalence rate 

amongst claimants was 19.5%. Sickness caused 58.9% of the claims, the remainder being due to 

an accident.

4.2 Kaplan-Meier Analysis of Claim Durations

In order to understand the duration profile of disability claims, Kaplan-Meier (see Kaplan and 

Meier, 1958) survival curves have been created for the continuation of disability claims. Kaplan- 

Meier curves can be used to provide a non-parametric estimate of the survival function for 

claims. The event of interest in this survival analysis is clearly claim termination. The duration 

variable is used to measure time since claim onset, and not time since payment of disability 

benefits begins.

Immediately apparent from Figure 4.1 is the drop in claims in force after 730 days; that is, after 

two years. This issue was investigated and claims which cease due to the expiry of a two-year 

benefit period were not included in this analysis. It is suspected, therefore, that a small 

proportion of claims that cease after two years are recorded as recoveries, when in fact they 

relate to the expiry of the benefit period. The effect is negligible and subsequent analysis 

proceeds using the data as presented in Figure 4.1.
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Kaplan-Meier Estimate of Survival Function

Claim Duration (Days)

Figure 4.1 Kaplan-Meier Estimate of the Claim Duration Survival Function

The above graph includes 95% confidence intervals for the estimated survival function. From 

the Kaplan-Meier analysis we note that,

• there appears to be a non-zero long term survival probability of about 0.07. This 

probability relates to lives who do not recover from their disability; and

• the Kaplan-Meier estimate of the survival function is very smooth. This suggests that 

parametric survival function models may work well in this context.

The results of an initial investigation of the impact of the various rating factors outlined in Table 

4.1 on claim termination rates are now presented. Again, Kaplan-Meier estimation is used. The 

Australian industry table for disability income insurance claim rates (IAD89-93) uses the 

following rating factors: age, sex, occupation class, deferment period and smoker status. Kaplan- 

Meier estimates of the survival function are created for each level of these rating variables, 

excluding age which is essentially a continuous variable.
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Note that the Kaplan-Meier plots shown in Figures 4.2 to 4.5 represent one-way analyses of 

claim duration experience observed from 1995 to 1998 inclusive.

Kaplan-Meier Estimate of Survival Function by Gender

........  Female
-------  Male

Claim Duration (Days)

Figure 4.2 Kaplan-Meier Survival Function Split by Gender

The estimated survival functions for males and females are very close with mild evidence that 

males have higher recovery rates than females between six months and one and a half years after 

onset of disability, but that long term there is very little difference.

The Kaplan-Meier estimates by occupation class indicate that occupations can be grouped into 

two groups, “A and B” compared with “C and D”. Occupation class definitions are given in the 

1997 Report of the Disability Committee (TIAA, 1997).
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Kaplan-Meier Estimate of Survival Function by Occupation Class

......... Occupation Class A
--------  Occupation Class B
-------- Occupation Class C
--------  Occupation Class D

Claim Duration (Days)

Figure 4.3 Kaplan-Meier Survival Function Split by Occupation Class

The most noticeable feature of the Kaplan-Meier estimates by deferred period is the significantly 

larger long term claim probability associated with the longest (greater than three months) 

deferred period group. There is also evidence of longer claim durations amongst

Kaplan-Meier Estimate of Survival Function by Deferment Period

|S
\  X
X

Zero Deferment Period 
Two Week Deferment Period 
One Month Deferment Period 
Three Months Plus Deferment Period

200 600 800 1000 

Claim Duration (Days)

1200 1400

Figure 4.4 Kaplan-Meier Survival Function Split by Deferment Period
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those claimants with policies that have deferred periods of one month across all claim durations. 

The three month deferred period has the longest predicted claim durations. Note that these 

durations exclude the deferred period itself. The initial three month continuous disability period 

that is required before claim payments commence under the relevant DII contract means that this 

group contains only more seriously disabled individuals than are present in the other deferred 

period groups.

Figure 4.5, shown below, demonstrates the effect of smoker status on claim duration.

I ,
i  °
ö
°  *r

o

p

Figure 4.5 Kaplan Meier Survival Function Split by Smoker Status

Smoker status does not appear to have a significant impact on the longevity of claims. This 

conclusion is the same as reached by the IAAust Graduation Subcommittee of the Disability 

Committee found when constructing the IAD89-93 table. Of course, marginal analyses such as 

those presented above do not give a complete picture of how the covariates (jointly) relate the 

termination rates. A more complex modelling process, described in the next section, 

incorporates all the covariates into a single model.

Kaplan-Meier Estimate of Survival Function by Smoker Status
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\
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200 600 800 1000 

Claim Duration (Days)

1200 1400

59



4.3 Cox Regression and the Proportional Hazards Assumption

The most commonly used approach to model the effect of covariates on survival probabilities is 

the Cox Proportional Hazards Model, (Cox, 1972). The major theoretical development that this 

model provides is the ability to model covariate effects in the presence of censored observations.

The data for a Cox regression model, based on a sample of size n, consists of 

{tj,Sj,Zj),j = l,2,...,n where tj is the time on study for theyth individual, Sj is the event indicator

(Sj = 1 if the event has occurred and Sj= 0 if the lifetime is censored) and zj is the /7-vector of 

covariates or risk factors for the jih individual.

The relation between the distribution of event time and the covariates or risk factors z can be 

described in terms of a model, in which the hazard rate at time t for an individual is

A(r;z) = (r)exp(z/?), (4.1)

where 2,, (r) is the baseline hazard rate, an unspecified function which outputs the hazard

function for the standard set of conditions z = 0 and ßis  a /7-vector of unknown coefficients. The 

parameters are estimated using the maximum (partial) likelihood technique. Importantly, the 

Cox model assumes that the hazards are proportional; in other words, the impact of covariates on 

the dependent variable, in this case rate of return to work, under the Cox model do not vary with 

time.

In the context of actuarial modelling of disability income insurance, this model has two major 

shortcomings. First, the Cox model does not produce a closed form mathematical formula for
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either the predicted hazard rate or the survival function. One of the primary aims of this work is 

to produce premium and reserve recommendations using multiple state modelling. In order for 

such work to be performed, it is preferable to have a mathematical model linking the various 

transitions in that modelling framework. The second possible limitation of the Cox model is the 

potential invalidity of the proportional hazards assumption.

A number of methods for testing the validity of the proportional hazards assumption in survival 

analysis have been proposed. Methods proposed based on statistical tests have included:

• Cox (1972) suggested testing the statistical significance of an interaction between time 

(or log(time)) and the various covariates specified in the model. If such an interaction 

term is statistically significantly different from zero then there is evidence that the impact 

of the covariate on survival duration varies with time; and

• Grambsch and Themeau (1994) and also Harrell (1986) have developed statistical tests 

based on the Schoenfeld partial residuals. These residuals are a measure of the difference 

between observed and expected values of the covariate at each time point. The idea of 

the tests is to detect a correlation between the Schoenfeld partial residuals (or some 

transformation thereof) and the rank order of the failure times.

Graphical procedures have also been proposed for testing the proportional hazards assumption.

These have included:

• Andersen (1982) suggested a plot of cumulative baseline hazards in different groups;

• a plot of the difference of the log cumulative baseline hazard versus time; and
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• Arjas (1988) suggested a plot of the estimated cumulative hazard versus number of 

failures.

For covariates with only a small number of levels, graphical checks are more suitable. Based on 

the Kaplan-Meier survival function, plots of the ratios of cumulative hazard functions are shown 

below. If the proportional hazards assumption is reasonable, then the plots should be close to 

horizontal lines.

In order to test the validity of the proportional hazards assumption for the DII claim termination 

rate analysis, we adopt a graphical approach. The graphs in Figure 4.6 plot the ratio of the 

cumulative hazards for various levels of particular rating factors. From equation (4.1) integration 

of both sides leads to cumulative hazard rates, which are also proportional. Hence if the 

proportional hazards assumption is valid we would expect these graphs to depict horizontal lines 

with no clear upward or downward trend.

A (Group 1)
Note that the graphs which follow in Figure 4.6 show the ratio —----------- -, where Group 1

A (Group 2)

represents the first named classification in the graph title and Group 2 refers to the second 

named covariate classification in the graph title, and A (jc) is an empirical estimate of the

cumulative hazard for disabled lives with characteristic set x. So, for example, in the first graph

A (Occupation A )
in Figure 4.6, we are considering the ratio —;---------------- f  as a function of claim duration.

A (Occupation B)

Again note that these cumulative hazard comparisons are one-way analyses.

The cumulative hazard ratio graphs for Occupation class show immediately that the cumulative 

hazard ratio seems to decrease with time. The occupation class graphs all show cumulative
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hazard ratios less than one. This indicates that the cumulative hazards are greater for occupation 

classes B, C and D than for class A. These graphs also indicate that the higher rate of return to 

work for claimants in Occupation Classes B, C and D compared to Occupation Class A becomes 

more significant as duration of claim increases.

Cumulative Hazard Ratio for Occupation A and 
______________ Occupation B_____________

Cumulative Hazard Ratio for Occupation A and 
_____________ Occupation C_____________

Cumulative Hazard Ratio for Occupation A and Cumulative Hazard for Males and Females
Occupation D

Claim Duration (Days)
Duration (Days)

Cumulative Hazard for Smokers and Non-Smokers Cumulative Hazard for Middle and Low Income Earners

Claim Duration (Days)
Claim Duration (Days)
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Cumulative Hazard for Sickness and Accident Causes of ClaimCumulative Hazard for High and Low Income Earners

Claim Duration (Days) Claim Duration (Days)

Figure 4.6 Cumulative Hazard Ratio Plots for Various Levels of Independent Variables

The cumulative hazard ratio graphs for benefit rate also show that middle and higher income 

earners have a lower rate of return to work. The effect of middle income compared to low level 

income is close to proportional across time. It is difficult to discern a pattern in the cumulative 

hazard ratio of high income earners compared to low income earners. There is certainly evidence 

of non-proportionality in the cumulative hazard ratio. The effect of smoking on the hazard rate is 

close to proportional. The cumulative hazard ratio graph for gender indicates that males have a 

higher rate of return to work than females but that the effect is reducing significantly with the 

duration of claim. Hence there is also evidence of non-proportionality in the effect of gender on 

the rate of return to work.

This graphical analysis shows clear violations of the assumption of proportional hazards for 

some of the key rating factors used in the proposed proportional hazards model. Extensions to 

the Cox regression model allowing for time varying regression coefficients have also been 

proposed (Themeau, 2000). These methods however will also not solve the problem of deriving 

a closed form mathematical expression for the predicted hazard rates. We therefore proceed with 

a parametric analysis of claim termination rates.
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4.4 Log-Linear Mixture Models

In Section 4.2 we noted that the Kaplan-Meier estimates of the survival function were relatively 

smooth and also plateaued at long durations at a probability greater than zero, approximately 

0.07. This feature of the survival data is referred to as an immune probability. This section 

describes survival analysis models, which take this feature of the data into account and therefore 

are suitable for describing claim termination rate data.

Mailer and Zhou (1995) describe a statistical test for determining whether “immunes” are 

present in data. Immunes are long-term survivors and in the case of disability income insurance 

claim termination rate analysis, they refer to those individuals who become disabled and remain 

disabled for the long term. The Kaplan-Meier analysis in Section 4.2 suggests that about 7% of 

claimants are disabled for the long term. The method is described for the case of the exponential 

distribution and involves comparing the likelihood for a model where the immune probability is 

zero with the maximum likelihood achievable when the immune probability is allowed to vary

on the range from zero to one. The test statistic is dn = -2 j /n o)-Z„ where 6 are the

maximum likelihood estimates (MLEs) obtained from fitting an exponential mixture model, 0H 

is the corresponding MLE under the null hypothesis of no immunes, and ln(0) is the log- 

likelihood function. Mailer and Zhou show that the asymptotic distribution of dn is a 50-50

mixture of a chi-square random variable with one degree of freedom and a point mass at zero. 

Applying this test to the claim termination rate data, we get a test statistic of 

-2(-17846.38 + 16357.45) = 2977.86, highly significant under the chi-square point mass

mixture distribution. This conclusion is not surprising after considering the Kaplan-Meier 

survival functions in Section 4.2. “Total and permanent disability” is also a commonly insured
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event and therefore long duration claims are well known phenomena and should also be 

expected to occur under DII.

Mixture models are based on fitting a parametric distribution to the claim durations for the lives 

that return to work. Define T to be a mixed random variable for the unknown claim duration of a 

disabled life that has just reached the end of the deferred period and is about to receive claim 

payments for the first time under this current period of disability. This distribution is then mixed 

with a point mass probability that the life will never return to work. For the case of the 

exponential mixture distribution, the density function is f  (t) = (1 -7r)A£~Aj,t > 0 and the

associated distribution function is /7(r) = ( l - / r ) ( l - e -'l') ,r  >0, where n  is the immune

probability and X is the usual exponential rate parameter. The survival function for the 

exponential mixture distribution is + 7r)e~A',t >0.

In order to achieve a good fit to the data, we will also consider a number of other potential 

mixture models from the Generalized F distribution family. The density functions, cumulative 

distribution functions and survival functions from the Generalised F family are summarised in 

the table below. All probability functions in the table are defined over t > 0.

M o d e l D e n s ity  F u n c tio n C u m u la tiv e  

D is tr ib u tio n  F u n c tio n

S u r v iv a l F u n c tio n

W e ib u ll

M ix tu r e

( \ - K ) ( f a ) a 1 A orexp J ( l - ; r )  1 - e x p  j - ( A r ) ° J ( l - ; r ) e x p j - ( / i r ) a J

+ n

L o g -L o g is t ic

M ix tu r e

+
1ITi

\ - K
------------- +  /T
1 +  ( * t ) a
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Generalised

Log-logistic

Mixture

,  . (,a p 1 a X
(1 - tt) ------- v ; --------------

[ i + { t x ) a y  b ( s , s )

no simple form no simple form

Extended

Generalised

Gamma

Mixture

r(,,)
5, exp |-(?/i)a |

no simple form no simple form

Gamma

Mixture
(i * y  r l  s exp(r W

no simple form no simple form

Lognormal

Mixture

„  \ a
l - ; r ) — j ^ e x p  ------------- :---------

v t y f2 ^  [  2 Ij

(l-/r)0{orlog(,k )} (1 — 7r)[l -  0{örlog(Ar)}

Generalised 

F Mixture
1 i t )  B ( s „ s 2 ) i  }  .

'  l l  *2 Ij

l l  "2 |j

no simple form no simple form

Table 4.2 Summary of Potential Claim Duration Parametric Distributions

In order to determine which family of mixture densities is most appropriate, each of the models 

identified above was fit to the termination rate data. At this stage, covariate information was 

ignored in the analysis. The fitted claim survival function was then compared with the Kaplan- 

Meier estimate of the survival function from Section 4.2.

The results of fitting each of the mixture models to the claim duration data are given in Figure 

4.7 and Table 4.3.
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Claim Duration (Days) KM Percentile

Generalised Log-logistic Mixture and KM Survival Function PP Plot for Generalised Log-logistic Mixture

------  KM Survival Functk
------ Generalised log-lc

Claim Duration (Days) KM Percentile

Extended Generalised Gamma Mixture and KM Survival Function PP Plot for Extended Generalised Gamma Mixture

------  KM Survival Function
------ Extended Generalised

Claim Duration (Days)
KM Percentile
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PP Plot for Gamma MixtureGamma Mixture and KM Survival Function

PP Plot for Lognormal MixtureLognormal Mixture and KM Survival Function

PP Plot for Generalised F MixtureGeneralised F Mixture and KM Survival Function

Figure 4.7 Assessment of Fit of Parametric Density to Claim Duration

Model Maximised Log- R-squared for PP AIC

Likelihood Plot

Weibull Mixture -16 038.77 96.455% 32 083.54

Log-Logistic -15 598.72 99.609% 31 205.44

Mixture

Generalised Log- -15 550.93 99.680% 31 109.86
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logistic Mixture

Extended -15 841.87 98.370% 31 691.74

Generalised Gamma

Mixture

Gamma Mixture -16 180.51 94.877% 32 367.02

Lognormal Mixture -16 333.63 97.210% 32 673.26

Generalised F -15 478.77 99.915% 30 967.54

Mixture

Table 4.3 Assessment of Fit of Parametric Density to Claim Duration

It is clear that the three-parameter distributions, excluding the Log-logistic distribution, all 

significantly overestimate the survival function for claims of duration less than six months. The 

PP plots highlight this deficiency very clearly. This phenomenon occurs because the first six 

months after claim inception accounts for approximately 80% of claim terminations. The 

Extended Generalised Gamma fit exhibits similar properties to the Weibull, Gamma and 

Lognormal models. The Log-logistic distribution provides the best three-parameter distribution 

summary of the data. The Generalised log-logistic distribution provides only marginal 

improvement over the log-logistic distribution. The Generalised-F is clearly the best of the 

distributions considered in terms of fit. Note that the Generalised-F distribution leads to a very 

small estimated immune probability. However, the tail of the standard (non-mixed) Generalised 

F distribution is sufficiently long that the resulting model still predicts that a small percentage of 

claims will continue for a long period. The model predicts a 5.1% probability of claim 

continuation after ten years.
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Based on the above findings, the analysis of the impact of covariates on claim duration will be 

performed using the log-logistic, generalised log-logistic and generalised F mixture 

distributions. We now describe the mixture models that are fitted and tested in this section. 

Assume that T is a random variable for the time (measured in days) it takes for a new disability 

claimant to return to work. We consider the transformation Y = log7\ The survival function for 

Y is

5(y)  = ( l - ^ ) 5 Ii(y) + ^, (4.2)

where 5u(y)is the survival function of F, given that the person returns to work. The density 

function for Y is

f ( y )  = ( \ - n ) f u(y),  (4.3)

where f„(y)  is the density function for the time until return to work, conditional on the 

individual returning to work at some stage. The long term disability probability, it, is modelled

using a logistic regression, E( i t \Z )  =------- \ ----- - , where Z is a covariate vector and r is  a
l+ e x p ( Z »

vector of regression coefficients. The part of the model relating to return to work is often called 

the accelerated failure part of the survival model in the literature. The random variable T is said 

to have a generalised F distribution with fi and eras location and scale parameters and s2, s2 as

shape parameters, if W = -°gT ^  is the logarithm of a random variable having an F
<7

distribution with 2s j and l s2 degrees of freedom. The density of W is then
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H, V Fl^)
/(w ;s p s2)=  1 + B ( sv s2) \ (4.4)

V S2 )  V S2

and the survival function is

S(w‘,s},s2) = ‘ '  ̂ Xs* 1 ( l - * ) '1 1 ß(52,5,) 1 dx, (4.5)

where -oo < /u < oo,<j > 0,s] >0,s2 >0 and B(s^s2)is the beta function evaluated at sj and 52-

For claimants who may return to work, we assume that the failure time T follows a generalised F 

distribution where the covariate vector X  impacts the failure time through the relationship 

jU = X ' ß ,  where ß  is a vector of regression coefficients. The model is fit using maximum 

likelihood estimation. The log-likelihood function for the model is

Note that if 5, = s2 = s then the Generalised F distribution reduces to the Generalised log- 

logistic distribution. If in the Generalised Log-Logistic we haves = 1, then the model further 

reduces to the log-logistic distribution.

The covariates in Table 4.1 along with all possible two-way interaction variables were tested in 

each of the three model families described above. Model selection was performed on the basis of 

the marginal significance of regression variables. Two-way interaction variables were also 

considered as possible regression variables. However, due most likely to the high correlation 

between the interaction variables and the underlying main effects, these interaction variables did

i = i

(4.6)
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not continue to have a significant effect throughout the model selection process and hence were 

not included in the final model.

The only continuous predictor used in the model was age. In order to properly model the effect 

of age on the return to work probability, three variables were used. The first variable was a 

simple linear predictor based on the age in years of the claimant at the time the disability 

commenced. The remaining two variables used were break-point predictor terms. These terms 

enable a different sensitivity of the return to work probability to increases in age at different 

levels of age. The terms were labelled ageind and ageind2. The variable ageind is equal to the 

age of the claimant if the claimant is ‘young’ and ageind2 is equal to the age of the claimant if 

the claimant is ‘old’. The definitions of ‘young’ and ‘old’ were formed by maximising the log- 

likelihood of the resulting model. The definitions used in the final model are ageind is age for 

claimants below age 29. The variable ageind 2 is equal to age for claimants above age 44.

The likelihood ratio test and the Akaike’s Information Criterion (AIC) were used to assess the 

models fitted. The results are summarised in Table 4.4 on the following page.

M axim ised Log- 

Likelihood

Likelihood Ratio Test 

Statistic relative to 

G eneralised F  M odel

A IC

A ccelerated Failure: No Covariates. No Logistic M odel

Generalised F -15,478.44 - 30,964.9

Generalised Log- 

logistic

-15,631.24 305.6 31,268.5

Log-logistic -15,701.86 446.8 31,407.8

A ccelerated Failure: No Covariates. Logistic: No Covariates

Generalised F -15,478.77 - 30,967.5
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Generalised Log- 

logistic

-15,550.93 144.3 31,109.9

Log-logistic -15,598.72 239.9 31,203.4

A ccelerated Failure: Covariates included. Logistic: No Covariates

Generalised F -15,297.81 - 30,627.6

Generalised Log- 

logistic

-15,343.79 92.0 30,717.6

Log-logistic -15,403.06 210.5 30,834.12

A ccelerated Failure: Covariates included. Logistic: Covariates included.

Generalised F -15,260.81 - 30,565.6

Generalised Log- 

logistic

-15,291.47 61.3 30,624.9

Log-logistic -15,351.74 181.9 30,743.5

Table 4.4 Assessment of Accelerated Failure and Mixture Models for Claim Duration

Note also that these likelihood ratio test statistic values can be compared to critical values 

derived from the chi-squared distribution. This statistical test will be conservative because the 

true distribution of the likelihood ratio test statistic has greater density at zero and the shortest 

durations, than does a chi-square variable.

It is clear from the above table that the Generalised F mixture model with covariates for both the 

accelerated failure time part of the model and the logistic part of the model is optimal. A 

summary of this fitted model is given on the following page.
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Generalized F mixture model

The m axim um  loglikelihood is -15256.62

Term s in the accelerated failure time model:

Coefficients Std.err z-score p-value

S hape1 -1.27397

Shape2 -1.59553

Log(scale) 0.00278 0.003667 0.7579 0.4485249

(Intercept) -0.00354 0.147557 23.4308 0.0000000

age 0.00278 0.003667 0.7579 0.4485249

ageind -0.00354 0.002286 -1.5489 0.1213947

ageind2 0.00202 0.001226 1.6476 0.0994444

occupB 0.12864 0.063015 2.0414 0.0412076

occupC -0.04742 0.042424 -1.1178 0.2636703

occupD -0.12454 0.044126 -2.8224 0.0047672

benrate2 0.06753 0.040174 1.6809 0.0927729

benrate3 0.11961 0.041763 2.8639 0.0041843

benrate4 0.27448 0.056277 4.8774 0.0000011

benratetop2 0.12041 0.050253 2.3961 0.0165717

sick 0.04555 0.031021 1.4685 0.1419671

defpd2 0.35779 0.033275 10.7526 0.0000000

defpd3 1.02768 0.183896 5.5884 0.0000000

Table 4.5 Accelerated Failure Model Regression Coefficients
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Terms in the logistic model:

Coefficients Std.err z-score p-value

(Intercept) 10.00406 1.586363 6.3063 0.0000000

age -0.07391 0.015437 -4.7875 0.0000017

smokernew -0.92219 0.298505 -3.0894 0.0020058

conttypenewl -0.58790 0.271987 -2.1615 0.0306560

sick -2.51927 1.482109 -1.6998 0.0891704

defpdO -2.52043 1.643859 -1.5332 0.1252161

defpd2 -0.83440 0.301255 -2.7697 0.0056100

defpd3 -2.54072 0.424056 -5.9915 0.0000000

Table 4.6 Logistic Model Regression Coefficients

The vast majority of the regressors shown in Table 4.6 have a statistically significant effect on 

the rate of return to work at the 5% significance level. For variables which are highly 

subdivided, for example, occupation which has four classes, the statistical significance of the 

variable is strongly affected by the amount of data for that particular class. For that reason, we 

note that occupation class C does not appear to have a significantly different rate of return to 

work than occupation class A, despite the contrasting results from the Kaplan-Meier analysis 

shown in Figure 4.3.

It is also of interest that there are regressors that are statistically significant predictors of the rate 

of return to work in the accelerated failure time part of the model which are not significant in the 

logistic part of the model. In particular the model shows that smoker status, which up until now
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in Australian studies has not been considered a significant determinant of claim termination 

rates, leads to a statistically significant increase in the probability of long term disability.

Apart from the likelihood ratio test, it is also possible to assess the quality of the fit of the model 

by dividing the data into groups according to the values of the covariates included in the final 

model. Out of the 8863 individuals in the study, 61 were found to possess all of the following 

characteristics: aged between 35 and 45, disability benefit of less than $2000 per month, 

disability caused by sickness, deferred period of two weeks, occupation class A and non-smoker. 

For these 61 lives, the Kaplan-Meier fit to the survival function is compared to the survival 

function predicted by the Generalised F model. The result of this comparison is shown in the 

graph below, where 95% confidence bands have been included around the Kaplan-Meier fit.

Comparison of Actual and Fitted Rates

Generalised F Distribution

Claim Duration (Days)

Figure 4.8 Comparison of Actual and Fitted Rates for the Generalised F Distribution

The fit of the Generalised F distribution is clearly very good except at the shortest durations 

where the model predicts higher rates of return to work than does the empirical Kaplan-Meier
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survival function. Since pricing and reserving for DII are impacted most by long duration 

claims, this lack of an accurate fit at the shorter durations has less financial consequence for a 

life office than would imprecise model fitting in the tail of the claim duration probability 

distribution, and so may not be of practical significance.

In Section 4.2 we demonstrated that the proportional hazards assumption of the Cox regression 

model was not satisfied by the covariates in the disability claim termination data. The impact of 

this assumption not being satisfied on the fit of the Cox regression model is shown in the graph 

below. This graph compares the same data as used in Figure 4.9 to compare the empirical 

Kaplan-Meier survival function with the survival function predicted using Cox regression.

Comparison of Actual and Fitted Rates

Kaplan-Meier 
Cox Regression

—L,

Claim Duration (Days)

Figure 4.9 Comparison of Kaplan-Meier and Cox Regression Claim Duration Models

This graph shows clear evidence that the Cox regression model fits claim termination rates that 

are significantly higher than the Kaplan-Meier estimate between durations 6 months and 2 years.
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A useful way to compare the fits of various models, given the aim of the modelling is premium 

rating, is to compare the predicted expected present value of an annuity payable to a disability 

annuitant throughout their period of disability. We consider a disability income insurance policy 

with a four year benefit period. The annuity is assumed to be payable continuously with the 

valuation performed at a force of interest of 5% per annum. Mortality is ignored, which is a 

reasonable assumption at this stage given that we are considering lives aged between 35 and 40 

and also that our aim is to assess the relative merits of the Cox regression model and the 

Generalised F Mixture Model in describing claim durations. Table 4.7 gives the expected 

present value of an annual annuity of one dollar payable throughout the period of disability 

under each model. It is clear that the Generalised F Mixture model is preferable in this case to 

the Cox regression model as evidenced by a much closer estimate of the annuity value to the 

underlying annuity value.

Kaplan-Meier Survival 

Function

Cox Regression Model Generalised F Mixture Model

0.6163 0.4739 0.5837

Table 4.7 Annuity Value Comparison for three Model Fitting Procedures

One of the most noteworthy features of the analysis in this chapter is the difference in 

statistically significant regressor variables between the accelerated failure time part of the model 

and the logistic regression for the immune probability component of the model. The next chapter 

extends this investigation to quantile regression, where the significance of rating variables is 

assessed at various quantiles of the distribution of claim durations, rather than just at the 

conditional mean.
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CHAPTER FIVE

REGRESSION QUANTILE ANALYSIS OF CLAIM 
TERMINATION RATES

Actuarial interest in quantiles other than the median has increased considerably in recent years. 

Most notable is the Australian Prudential Regulatory Authority (APRA) standard for the 

valuation of general insurance liabilities, GPS210, introduced as part of the Australian General 

Insurance Reform (2001). This standard requires that a risk margin should be established “on a 

basis that is intended to secure the insurance liabilities of the insurer at a given level of 

sufficiency -  that level is 75 per cent”. Previously the General Insurance Act (1973) was 

considerably less prescriptive on the level of risk (or prudential) margin that insurers were 

required to hold.

Given that general insurance actuaries are now required to estimate a 75th percentile of the 

distribution of outstanding claims for recording in profit and loss statements it becomes 

important that the impact of potential risk factors on various quantiles of the distribution of 

outstanding claims provisions be considered in addition to just the impact of risk factors on the 

mean of the outstanding claims provision.

In the context of disability income insurance claim termination rates, we have already seen an 

example of how various insured characteristics impact claim termination rates differently at 

different quantiles of the distribution of claim duration. For example, Chapter 4, the use of
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mixture models showed that the smoker status, which has not been included in previous 

Australian industry tables for claim termination, has a statistically significant impact on the 

probability that a DII claim will continue indefinitely and that the claimant will never return to 

work. This is evidence that smoker status is a statistically significant predictor for claim 

termination rates (leading to a reduction in claim termination rates) for the very longest duration 

claims. In other words, a traditional regression which considers only the impact of rating factors 

on the mean would not find that smoker status is statistically significant, however closer 

examination of the impact of smoker status in the tail of the probability distribution of claim 

durations indicates that smoker status is critical for long duration claims.

The importance of understanding the impact of potential rating factors and the different impacts 

they have across the claim duration distribution is of particular importance in reserving and 

pricing DII contracts. Failure to properly assess the impact of a rating factor in the tail of the 

probability distribution of claim durations will lead to serious underestimation of claim reserves 

in respect of disabled lives, particularly those lives who have been disabled for longer than, say, 

six months.

5.1 Regression Quantiles

One way of extending the linear model to allow for prediction of various quantiles of the 

distribution of the claim duration is the method of regression quantiles of Koenker and Bassett 

(1978). This methodology has recently been extended to allow for standard right censoring and 

therefore can provide an alternative to the Cox Model or mixture models; see Portnoy (2003).

Traditional statistical and actuarial analysis has focused on sample averages as estimates of the 

population mean. Variability has generally been considered using sample standard deviations
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and the assumption of normality or, more recently, other parametric assumptions have been 

made. It has long been argued, (Galton, 1889), that any complete analysis of the “full variety of 

an experience requires the entire distribution of a trait, not just a measure of its central 

tendency.” We therefore consider the use of regression quantiles as a method for identifying 

heterogeneity among subpopulations by considering the behaviour of the percentiles as a 

function of their associated probability x.

For a random variable Y of measurements from some population, the population quantile is 

defined to be the value QY (t ) satisfying

Next, we describe the generalisation of this quantile to a regression context through the use of 

the conditional quantile. Specifically, the conditional quantile, QYKX (r,x),  satisfies

Whereas traditional regression analysis provides a single regression curve, for example the 

conditional mean function, in this regression quantile context we can let r  vary, and therefore 

consider a family of conditional quantile curves to provide a clearer picture of the dependencies 

present in the data.

To simplify the analysis, Koenker and Bassett (1978) suggest the estimation of conditional 

quantile curves under the assumption that, after appropriate transformations, they are linear in 

the covariates. This assumption has the advantage of allowing easier interpretation of coefficient

P{Y <Qy = t for 0 < r  < 1. (5.1)

(5.2)
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estimates and also permits significantly faster computation. The estimation of the conditional 

quantile functions involves finding the solution to the problem of choosing £, to minimise

1=1
(5.3)

where pT is the piecewise linear “check” function,

pT(u) = u ( r - l ( u  <0)) = tu+ +(1 - r )u~,  (5.4)

and where u and u are the positive and negative parts of u taken positively, respectively.

If we next consider a general linear response model where denotes a sample of responses

Y and explanatory variables x (in m dimensions), and suppose

Yi =xiß  + zi, i = 1, 2, . . . , ft, (5.5)

where ß  is an m-dimensional parameter and is the random error term. If we then minimise

Kr(£) = i > r f r - £ > )  (5-6)
1=1

by varying ß  we obtain the regression quantiles. Note that the estimated regression quantile 

parameters implicitly depend on the probability, r. In particular, the ;'th coordinate of ß{r)
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gives the marginal effect of a unit change in they'th explanatory variable, xiJ\  on the conditional 

f  th-quantile of the response.

If the model predicts that the ß  coefficients change with T, then we have evidence of

heterogeneity in the population. This heterogeneity can take the form of unequal variances 

(heteroscedasticity) or it may represent the varying effect of heterogeneity among 

subpopulations.

Throughout the analysis which follows we will make use of the R library crq. This library 

contains a function which allows the user to fit censored regression quantile models and assess 

the extent of heterogeneity in the covariate effect over the range of claim durations.

5.2 Regression Quantiles and Claim Termination Rates

The aim of this section is to illustrate the application of censored regression quantiles (Portnoy 

2003), to claim termination rates for DII. The heterogeneity of the effect of the covariates age, 

occupation and deferred period across the distribution of claim durations will be analysed. The 

benefits of using censored regression quantile analysis as compared to more traditional Cox 

regression in this context will also be explored.

The potential output from censored regression analysis can be extremely voluminous. This issue 

arsies due to the wide range of possible conditional quantile curves that can be estimated. In 

order to make the interpretation of results simpler, we restrict ourselves in this chapter to the 

consideration of the effect of age, occupation class (C or D vs A or B) and deferred period 

(greater than or equal to 28 days or less than 28 days).
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A censored regression quantile model was fit to the entire dataset of claim durations described in 

Chapter 4. The R command used to fit the model is

crq(Surv(log(dum3),terminate) ~ age + occupnew + defpdnew, data = termrates2), (5.7)

where occupnew is an indicator variable for occupation classes C and D, and defpdnew is an 

indicator variable for deferred period in excess of 27 days.

Mathematically, the form of the fitted censored regression model is

log (Time to return to work) = /?0 + ßx (Age) + ß2 (Occupation Class) + /?3 (Deferred Period), (5.8)

where separate models of the above form are fit to quantiles corresponding to breakpoints in the 

claim duration data.

To consider the impact of age on the log of claim duration we create a graph of the predicted 

censored regression quantile relationship between log of duration and age; see Figure 5.1.
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Log of Claim Duration as a Function of Age
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Figure 5.1 Log of Claim Duration as a Function of Age for Five Different Percentiles

Immediately obvious from Figure 5.1 is the increasing slope of the regression lines at higher 

percentiles of the distribution of log claim duration. This suggests that the age sensitivity of (the 

log of) claim duration is greater for longer duration claims. In particular, the effect of increasing 

age increases the 90th percentile of the distribution of claim durations for a given age much more 

than the same increase in age increases the 10th percentile of the distribution of claim durations. 

The regression coefficients for age, occupation class and deferred period for various percentiles 

are given below, in Table 5.1. Note that the effect of occupation class on claim duration also 

varies significantly with the percentile of the distribution being considered. In particular, the 

effect of being in occupation class C or D in reducing the predicted duration of disability is more 

pronounced at the higher percentiles of the distribution of the claims distribution.
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Percentile Censored Regression 

Quantile Coefficient 

(Age)

Censored Regression 

Quantile Coefficient 

(Occupation)

Censored Regression 

Quantile Coefficient 

(Deferred Period)

10th Percentile 0.00419 -0.01846 0.60475

25th Percentile 0.00494 -0.06772 0.59322

50th Percentile 0.01068 -0.12023 0.59366

75th Percentile 0.02048 -0.23410 0.71315

90th Percentile 0.04206 -0.29936 0.62723

Table 5.1 Censored Regression Quantile Coefficients

The above results have clear implications for the determination of the disabled life reserve 

(DLR). This quantity is the reserve held by an insurer in respect of an insured who is currently 

claiming benefits at the date of the valuation. Insurers will always have a material proportion of 

their portfolio relating to insured lives who are currently disabled and who have been disabled 

for a reasonable period of time at the date of valuation. The insurer is required to determine the 

amount of money that needs to be held in respect of these disabled and insured lives at a 

particular instant in time. Clearly the amount of money required depends on the future disability 

status of the insured life. Figure 5.1 shows that the effect of the insured being older or of being 

in occupation class A or B on the claim duration is more significant for longer duration claims; 

that is, for claims that have extended into higher percentiles of the claim duration probability 

distribution.

A model we have discussed earlier that is often used in survival analysis is the Cox Regression 

model, (Cox, 1972). This model estimates the impact of rating factors such as age and 

occupation class on the dependent variable, claim duration, by considering the impact of these 

rating factors collectively across all quantiles of the claim duration distribution. It is therefore of
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interest to assess the difference in the predicted sensitivities of claim duration to each of the 

insured characteristics from the Cox model and the censored regression quantile method.

5.3 Comparison of Cox Regression and Censored Regression Quantiles for Claim 

Termination Rates

To begin this section, we fit a Cox regression model to our data using age, occupation (class C 

or D indicator) and deferred period (greater than 27 days indicator) to the claim duration data. 

The dependent variable is the log of the claim duration and the usual right censoring in the data 

is used within the analysis. The output for this regression model is given below in Table 5.2.

coxph(formula = Surv(log(durn3), terminate) ~ age + occupnew + 

defpdnew, data = termrates2)

coef exp(coef) se(coef) z score p-value

age -0.0124 0.988 0.00119 -10.40 0 . 0e+00

occupnew 0.1285 1.137 0.02524 5.09 3 . 5e -07

defpdnew -0.4668 0.627 0.02482 -18.80 0 . Oe+00

Likelihood ratio test=631 on 3 df, p=0 n= 8863

Table 5.2 Censored Regression Quantile Output

The three rating factors are clearly highly statistically significant and the overall model indicates 

that age, occupation class and deferred period are jointly statistically significant.

In order to compare the Cox regression model to the censored regression quantile model it is 

necessary to compare the predicted sensitivities of the quantiles of the claim duration
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distribution under the two models. For the Cox model, we have that the predicted hazard 

function for the ith individual in the sample, ht (r), is

h,(t) = h0(t)ea , i = (5.9)

where (?) is the baseline hazard function. Given this form for the hazard function, the 

survival function can be written as

Sl (t) = ex p (-//0( r ) / ' /') , (5.10)

where H0 (r) = J/i,( (s)d.s.
0

So the conditional quantile for claim duration, T, at x becomes

QCm(T\x) = H ~ ' ( - \ o g ( \ - T ) e - ^ ) .  (5.11)

The quantity ß Cox(r lJC) therefore the predicted time since claim inception, under the Cox

Regression model, when a proportion ro f those insureds who claim from their DII contract will 

have returned to work. The censored quantile regression coefficients give the predicted change 

in various quantiles of the distribution of the log of claim duration when various rating factors 

are increased by one unit. It is therefore possible to directly compare the coefficients estimated 

using censored regression quantiles with the derivative of the expression at (5.11). Consequently

we compare the ß ( r )  with the quantity

£ ßc„ (* 1 *) = £  H- (-log  (1 -  f ) (5.12)

To calculate the above derivatives we need to use numerical differentiation owing to the 

irregularities present in the inverse cumulative baseline hazard function, / / “'(?). For the 

calculation of this derivative, we use the model in Table 5.2. From this model we calculate the
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fitted claim continuance probabilities at each of the times that a person in the sample returns to 

work for a life aged 40.53, the mean of the ages in the sample. Denote these values 5,(/,■). We 

also use the model in Table 5.2 to calculate the fitted claim continuance probabilities for a life 

aged 41.53 (one plus the mean of the ages in the sample). Denote these values S2(tt). Next we

determine the log of claim duration that corresponds to each of the values of Sx (t;) for a life

aged 41.53. These values are calculated using linear interpolation and the S-Plus function, out2, 

which performs this calculation (amongst other calculations) is given in full in Appendix 5.1. It 

is then straightforward to numerically estimate the predicted quantile sensitivity based on the 

Cox Regression model. The difference between the survival times for a given quantile of the log 

claim duration distribution estimates the sensitivity of various quantiles of the log of claim 

duration distribution under the Cox Model.

It is useful to compare the sensitivities of various quantiles of the log of claim duration 

distribution from the use of censored regression quantiles and the more conventional Cox 

regression model. Figures 5.2 and 5.3 compare these quantile sensitivities for changes in age and 

occupation class. The sensitivity labelled on the y-axis of the graphs in Figures 5.2 and 5.3 refers 

to the expression in (5.12).
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Figure 5.2 Comparison of Sensitivities of Log Duration to Age
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Figure 5.3 Comparison of Sensitivities of Log Duration to Occupation Class

91



From Figure 5.2 it is clear that the predicted age sensitivity of lower quantiles (at higher levels 

of the survival function) is higher under the Cox model than for the censored regression quantile 

analysis. There is considerable variability in the censored regression quantile coefficients for the 

higher quantiles (survival function between 0 and 0.2). This volatility is primarily due to the 

small number of claims that are still continuing at these claim durations.

From Figure 5.3, there is a clear bias in the estimation of the quantile sensitivities of log of claim 

duration to occupation class for the Cox regression model. The Cox regression model predicts a 

greater reduction in claim duration for occupation classes C and D than the censored regression 

quantile analysis over most of the range of the log of claim duration distribution. This result is 

driven in part by the inappropriateness of the proportional hazards assumption that underlies the 

Cox Regression model.

5.4 Assessing the Comparison between Cox Regression and Censored Regression Quantiles 

using Subsampling

Figure 5.2 also clearly demonstrates that using Cox regression alone can lead to flawed 

conclusions about the age sensitivity of the log of claim duration particularly for shorter duration 

claims. It is of interest to see whether the disparity between predicted age sensitivities of claim 

duration between the two approaches is likely to occur with most sets of disability income 

insurance data or whether the difference is more a feature of the particular set of Australian 

industry claim duration data that is being analysed.

To explore this, we consider a subsampling approach whereby 84 different datasets, each of size 

400, chosen from the original set of 8863 data points. These 84 different datasets contain records 

1 to 400, 101 to 500, ..., 8401 to 8800. Since the data is in no particular order, with respect to

92



the variable of interest namely claim duration, this is similar to analyzing 84 different sets of 

randomly chosen disability income insurance claim duration data each of size 400 records.

For each of these datasets of size 400, we fit both a Cox regression model, equivalent to the 

model in Table 5.2, and also a censored regression quantile model. These models both use age, 

occupation class and deferment period as the only covariates.

We then compare the censored regression quantile age coefficient for each of the 400 models to 

the Cox regression age sensitivities for a range of quantiles. We are interested in assessing the 

absolute difference between the censored regression quantile coefficients and the Cox regression 

quantile derivative function. In order to make the comparison more straightforward, we averaged 

the Cox regression quantile sensitivities over survival function bands, namely [0,0.2), [0.2,0.4), 

[0.4,0.6),[0.6,0.8) and [0.8,1.0], We also averaged the censored regression quantile function over 

the same bands for the survival function. The difference in the mean sensitivities for each of the 

84 models were then calculated. A density of these differences was then created. The program 

which performs this subsampling is the S-Plus function, out3, shown in full in Appendix 5.1.

The density for the difference in mean sensitivities for age and Survival Function in excess of 

0.8 is shown below. The mean of the average differences between the sensitivities is 0.0008570 

which is 20.1% of the censored regression quantile sensitivity. Hence the Cox Regression 

predicts an age sensitivity of log of claim duration that is 20.1% higher than the censored 

regression quantile method for the shortest 20% of claim durations.
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Density Function of Mean Difference for Cox Regression and CRQ Analysis
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Figure 5.4 Density Function of Mean Difference for Cox Regression and CRQ Analysis for 

the Survival Function on the range [0.8,1.0]

Similarly, Figure 5.5 on the following page shows an empirical density function of mean 

differences in predicted quantile sensitivities from Cox Regression and censored regression 

quantiles over the [0.6,0.8) band of the survival function. The mean difference is 0.0024, or 

35.6% of the censored regression quantile analysis. This finding indicates again that Cox 

Regression predicted sensitivities of the return to work hazard rate to covariates are consistently 

higher than their censored regression quantile counterparts over the 60% to 80% region for the 

claim duration survival function.
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Density Function of Mean Difference for Cox Regression and CRQ Analysis
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Figure 5.5 Density Function of Mean Difference for Cox Regression and CRQ Analysis for 

the Survival Function on the range [0.6,0.8)

This chapter has demonstrated an additional technique that can be used to detect heterogeneity in 

claim duration data. Censored regression quantiles therefore provide a more reliable method for 

assessing the impact of covariates in the tail of the probability distribution of claim durations 

than do other more commonly adopted methods from survival analysis, such as Cox Regression. 

In Chapter Six, we combine results for claim incidence and claim termination into a premium 

rating and valuation model for use by life insurers managing DII business.
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CHAPTER SIX

MULTIPLE STATE MODELLING, FLOWGRAPHS AND 

DISABILITY INCOME INSURANCE

l2This chapter investigates the use of multiple state models for pricing and reserving for 

disability income insurance products in light of results from Chapters 3 and 4 for both claim 

incidence and claim termination rates. Also, the piecewise constant intensity approach to 

premium determination of Jones (1993) is extended to allow for determination of premium rates 

for a range of DII contracts.

6.1 Multiple State Modelling

Haberman and Pitacco (1999) give the general multiple state model used for describing the 

transitions made by holders of DII policies. The model is shown below in Figure 6.1.

1 The material in this chapter has been presented at an “Actuarial Models for Financing Disablement Benefits” 
seminar directed at actuarial practitioners.
2 The multiple state model work in this chapter has also been used by the author along with Professor Richard 
Heaney in a publication, “Genetic Testing in Life Insurance”, which appeared in Agenda, Vol.10, Issue 1.
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ABLE

Figure 6.1 Multiple State DII Model

The transition intensities <7, p, p  and v are the standard hazard rates for disability onset, 

recovery from disability, death from the able state and death from the disabled state respectively. 

These are the same as the force of sickness, the force of recovery, the force of mortality for able 

lives and the force of mortality for disabled lives, respectively.

The multiple state model in Figure 6.1, where transition intensities are assumed to be constant 

through time can be used to calculate conditional probabilities of the form 

P (0,0 = P(life is in state j  at time 1 1 life is in state i at time 0). Occupancy probabilities of the

form P (0, t) =  P(life is in state i for all time from 0 to t I life is in state i at time 0) can also be
ii

determined using the multiple state model. An explicit formula for occupancy probabilities is

P- (0 ,0  = exp I - \ { p r + vr)dr =exp (~(p + v)t ) ,  (6.1)
" V o  J

where the final equality only holds if transition intensities are constant through time.
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The general transition probabilities are determined by solving a set of Kolmogorov forward 

differential equations. The derivation of these results, again for constant transition intensities, is 

given in Haberman and Pitacco (1999).

The modelling of the claim inception rate (or rate of disability onset) was described earlier in 

Chapter 3. A generalised linear model with a Poisson error and logarithmic link function was 

found to be suitable amongst the class of commonly used generalised linear models. This model 

highlighted a number of statistically significant dependencies between claim incidence and 

various rating factors or characteristics of insured lives. The statistically significant factors were 

listed in Appendix 3.3.

The modelling of claim duration was considered in depth in Chapter 4. Mixture models from 

survival analysis (Mailer et al, 1995) based on the generalised F family of probability 

distributions (Peng et al, 1998) were considered, and again a number of rating factors were 

found to be statistically significant predictors of claim duration. These results were shown in 

Tables 4.5 and 4.6. The survival analysis from Chapter 4 also highlighted how the claim 

termination rate is very closely related to the duration of claim. The smoothed empirical claim 

termination rates are shown in Figure 6.2 and the reduction in claim termination rates with 

duration is very clear.

Most evident from Chapter 4 was the decreasing rate of return to work with increasing duration. 

For simplicity in this chapter, termination rates are described with a generalised linear model 

with indicator variables used to describe the differing rates of claim termination as duration of 

claim varies. The GLM was again fitted using a Poisson error structure and logarithmic link 

function.
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Supersmoothed Hazard Rates for Claim Termination

Duration

Figure 6.2 Supersmoothed Hazard Rates for Claim Termination

The fitted model for claim termination rates was therefore of the form

£(l^) = exp /J0 + f > ,X , ( 6 .2)

where F, denotes the claim termination rate for the ith life, X, (i = 1,2,..., 14) are the independent 

predictor variables and the ß  coefficients are the estimated regression parameters. Table 6.1 

gives the regression coefficients for each of the independent variables. Note that this model is a 

simplified version of the model presented in Chapter 3 for claim termination rates that is suited 

to the problem of DII premium rating and multiple state modelling.
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Variable GLM Regression Variable GLM Regression

Coefficient Coefficient

Intercept 1.70011 Age greater than 50 

years

-0.29768

Duration between 30 

and 60 days

0.12094 Deferred Period

between 28 and 89 

days

-0.27829

Duration between 60 

and 90 days

-0.22284 Deferred Period 90 

days or greater

-0.98718

Duration between 90 

and 180 days

-0.76698 Benefit Rate between 

1500 and 2000 per 

month

-0.05445

Duration between 180 

and 360 days

-1.46078 Benefit Rate between 

2000 and 2500 per 

month

-0.07993

Duration greater than 

360 days

-2.06876 Benefit Rate between 

2500 and 3000 per 

month

-0.24049

Occupation either

Class C or D

0.11541 Benefit Rate greater 

than 3000 per month

-0.10530

Age between 35 and 

50 years

-0.15266

Table 6.1 Estimated Regression Coefficients -  Claim Termination Rate Analysis

Each of the variables included in this generalised linear model were statistically significant at the 

5% level.
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The duration dependent rates of claim termination imply that we are not able to use the results 

described above for constant transition intensities. Methods for calculation of transition 

probabilities and, in turn, risk premia for duration dependent recovery rates therefore need to be 

developed.

6.2 Duration Dependent Recovery Rates

Jones (1993) considers the problem of calculating transition probabilities for multiple state 

models, first where transition intensities are constant and then when transition intensities are 

assumed piecewise constant over various time intervals since policy inception but differ between 

time intervals. We first review the calculation of transition probabilities when transition 

intensities are constant. We first assume that n,, (t ) = fitj. Define

P(S(u)  = j \ S ( t )  = i) = Pij(u- t ) .  (6.3)

The transition intensities are then placed in an N x N  matrix (in our case a 3x3 matrix). This 

matrix is denoted Af=||//(/||. Similarly, we define P(z)  = ||P(z)|| with P(0) = /,

the identity matrix. If we denote by P '(z) the matrix with (i,j)’th entry — ^ ( z ) ,  the
dz ,J

Kolmogorov forward equations can be written as P' (z) = P( z ) M  with boundary condition

P(0) = 7.

Cox and Miller (1965) suggest a useful and quick method for solving the Kolmogorov forward 

differential equation in this case. The method involves writing
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M = ADC, (6.4)

where D is a diagonal matrix whose elements are the distinct eigenvalues of M, the i’th column 

of A is the eigenvector associated with the (i,i)’th element of A and C is the inverse of the matrix 

A. They then showed that

P( z )  = Ad\ag(e^ ..... (6.5)

from which we obtain

P„ ( Z) = H a 'KCh / kl ■ ( 6 '6 )
h=1

Hence, in order to find the transition probabilities between the three states of the multiple state 

model we need to be able to calculate, numerically, the eigenvalues and eigenvectors of the 

transition intensity matrix, M.

Jones (1993) extended the above methodology to allow for piecewise constant intensities. Under 

this proposal, the transition intensities are assumed to vary with time since the policy was sold. 

The transition intensities are assumed constant within set intervals of time but differ between 

separate intervals of time. To calculate the transition probabilities, Jones found that a suitable 

formula is

p„ m (6. 7)
/]= i

where denote the elements of the eigenvector matrix formed under decomposition (6.4) 

based on the transition intensities that apply during time period (m„). Similarly, c(mu) denote the
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elements of the inverse of the eigenvector matrix formed using (6.4), and finally d^  are the 

eigenvalues in the diagonal matrix D from the (6.4) decomposition applying to time period (mu).

The above formulae only apply to transition intensities which vary with time since policy 

inception -  for example they are useful in determining transition probabilities when transition 

intensities vary due to, for example, age. In the DII context, however, the recovery rate varies 

according to duration spent in the disabled state. This time differs from simply duration since 

policy inception for two reasons. First, the “policy inception” for the majority of policyholders 

does not mean that the policyholder becomes disabled. Second, the duration of most recent 

period of disability resets itself to zero each time that a life returns to the disabled state. It is 

possible for a life to be disabled for a period of three months and then recover and return to the 

disabled state one month later. The duration since disability onset returns to zero in this model 

when the second period of disability commences. The analysis by Jones therefore needs to be 

modified before it can be applied in this context.

Consider a tree diagram which indicates the health or disability of a life that has just bought a 

DII policy during the next one year period. The health or disability of the life is checked at each 

of 60, 120, 180 and 360 days after policy inception. Death is, of course, also possible and this 

possibility will mean that the sum of the probabilities for transitions from a particular node will 

sum up to slightly less than one. There are sixteen possible sequences of health and disability at 

the four time periods checked during the year after the policy is sold. The transitions for the first 

tree time periods are shown below in Figure 6.3.
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Figure 6.3 Three-step tree Diagram for Calculation of Premium Rates

An initial aim of this analysis is to determine the actuarially fair risk premium for a particular 

DII policy. We will consider a one-year DII policy sold to a life aged 35. The benefits provided 

under the policy are:

• if the life becomes disabled during the first year after purchasing the policy then benefits 

are paid during that year while the life is disabled equal to 75% of the salary immediately 

prior to paying the premium;

• if the life is disabled at the end of one year after purchasing the DII contract, then the life 

is paid at a rate equal to 75% of his salary while this disability continues. Once the life 

returns to the able state, payments under this insurance coverage cease.
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For simplicity, in the determination of the risk premium, we will ignore the impact of expenses. 

Investment income will be assumed to earn on reserves held by the insurer at 5% per annum 

effective.

Define P*(0,f) to be the probability that the life is entitled to benefits at time t, where t is 

measured in days. Clearly for the first year (taken to be t < 360), this quantity is just the 

probability that the life is in the disabled state after t days given that the life was healthy at time 

zero. After the first year, P*(0,f) is the probability that the life was disabled at time one year

and continues to be disabled for the period from exactly one year after policy purchase up until 

time t.

In order to use Figure 6.2 for determining risk premia we use the P*(0,r) values described 

above because these are the probabilities that a payment is made at time t under the contract. To 

derive the P*(0,f) values, we first determine the probabilities that the life reaches each of the 30

nodes in the tree. Consider the first probability /?/. This is the probability that a life who has just 

purchased a DII contract is healthy in sixty days’ time. There may be any number of visits to the 

disabled state in the sixty days following purchase of the contract. This probability can be 

calculated using the method of Jones (1993), described above. The matrix of transition 

intensities for the first sixty days, where the able state is state 1, the disabled state is state 2 and 

the dead state is state 3, is

(6.8)

0
V

0 0
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where A!1 is the transition intensity applicable to moving from state i to state j  and, where the 

transition intensities from a particular state are dependent on time spent in a given state, we use 

the notation Â m) to denote the transition intensity from state i to state j  that applies when the life

has been in state i for an amount of time applicable to the mth time grouping. For this study the 

groups of time are given in the Table 6.2 below. These groups are only relevant for states where 

exit transition intensities are duration dependent -  in this case duration groupings are relevant 

only for the transition from the disabled to the able state.

Group Number Duration in Disabled

State included in Group

1 0 to 60 days

2 61-120 days

3 121 to 180 days

4 181 to 360 days

5 After 360 days

Table 6.2 Duration Bands for Recovery Transition Intensities

Using Jones (1993), we first construct the singular value decomposition of the matrix (6.8) and 

then use (6.7) to determine the probability that the life is in either the healthy or ill state after 60 

days. This method is coded in S-Plus and the full code is given in Appendix 6.1.

This process is repeated to determine the probabilities for all other branches in Figure 6.3 in a 

recursive manner. At later branches, the probability calculation is more complicated due to 

allowance for varying durations of disability at the date when the probability calculation is 

required. For example, to determine the probability labelled p221 (that is the probability that a
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life who is disabled after both 60 and 120 days will be healthy after 180 days), we assume the 

life has been disabled for 90 days at time 120 -  that is, we are implicitly assuming that 

disablement occurs uniformly over the interval from policy inception to duration 60 days for 

those who are disabled at duration 60 days. The required probability is therefore determined as 

the probability that a life who has been disabled for 90 days recovers in the next 30 days and 

then is still healthy after a subsequent 30 days plus the probability that the life who has been 

disabled for 90 days is disabled after a subsequent 30 days and then, having been disabled for 

120 days recovers and is able after a further 30 days. This use of the law of total probability is 

required because different recovery rates apply for different durations of continuous disability.

Having found the probabilities of traversing each of the branches in the tree of Figure 6.3, we 

can easily determine, by simple multiplication of probabilities, the probability that the life 

reaches each of the nodes in the tree. These are determined by the node 123 and node4 functions 

which are part of the major function shown in Appendix 6.1.

Next we need to determine the probabilities of payments that could be made more than one year 

after the policy is sold. These payments are restricted to those who are in the disabled state 

exactly one year after the policy is sold and continue in this state for a maximum of a further 

four years. That is, for this DII contract we assume a benefit period of five years. For a life who 

is healthy at each of 60, 120 and 180 days but is in the disabled state at time 360 days, we 

assume that this life has been in the disabled state for 90 days at the end of the year. The 

probability of ongoing disability is therefore calculated based on the recovery rates for a life 

who has been disabled for between 60 and 120 days for the first 30 days after one year, and then 

using recovery rates based on the period between 120 and 180 days for the next 60 days. The 

calculations of disability at these times are performed by the “prob” functions labelled L, M, N, 

O and P which also form part of the major function shown in Appendix 6.1.
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If we define the probability of reaching each of the sixteen nodes after 360 days as, moving 

down the tree in Figure 6.3, as N411, N412, ..., N416, then the probability described in the 

previous paragraph for disability between 360 and 390 days can be written as

Pr(disabled fo rte  (361,390))= (A42 + A46 + A ^410+^414)exp(-(^f) + //)(f-3 6 0 ))

(6.9)

+ (/V44 + A^412 + Â 48 + A ^414)exp(-(^) + //)(f-3 6 0 )).

Note that for nodes N44, N412, N48 and N414, the life has been disabled for between 180 and 

360 days at the end of the year, and hence we use the recovery rates in the calculation.

6.3 Risk Premium Calculations

If we further define i as the annual effective rate of interest assumed to be earned on funds held 

by the insurance company, and B as the annual benefit amount paid while the life is in the 

disabled state, the risk premium is

Risk Prem = B P*(0,t)  
m 365 (l + i')'/365

(6 . 10)

This calculation is performed in the premium function, shown in Appendix 3.1. Note that the 

premiums are calculated for a $10,000 annual benefit. Importantly, the premium increases for 

higher benefit levels are on a per dollar insured basis.
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To illustrate the range of risk premiums applicable to lives with various characteristics, we 

perform the following calculations. The risk premium for a DII contract with a maximum 

allowable benefit of 5 years after the date that the policy is sold, where interest is assumed to 

earn at 5% per annum effective for the groups of lives shown in Table 6.2.

Age 20 to 60 at 5 year intervals

Occupation Class Occupation Class A, B, C or D

Benefit Rate <$1500, $1500-$2000, $2000-$2500, 

$2500-$3000, >$3000 per month

Deferred Period <28 days, 28 to 89 days, 90 days or longer

Table 6.3 Groups of lives for risk premium calculations

The results of the risk premium calculations are shown in Figures 6.4, 6.5 and 6.6.

Risk Premia by Occupation Class

Occupation A 
Occupation B 
Occupation C 
Occupation D

Age (Years)

Figure 6.4 Risk Premia by Occupation Class
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Risk Premia by Benefit Level

Benefit Rate 1 
Benefit Rate 2 
Benefit Rate 3 
Benefit Rate 4 
Benefit Rate 5

Age (Years)

Figure 6.5 Risk Premia by Benefit Level

Risk Premia by Deferred Period

Deferred Period 14 
Deferred Period 28 
Deferred Period > 28

Age (Years)

Figure 6.6 Risk Premia by Deferred Period

Salient features of this analysis include:
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• A marked increase in premium rates with age across all levels of benefit, occupation 

class and deferred period

• a significant increase in the premium rate with age for the short deferred period. This is 

driven largely by the strong interaction between age and deferred period in the claim 

incidence model

• higher benefit amounts leading to higher per dollar of benefit premiums

• the fact that the higher claim incidence rates for occupation classes C and D more than 

offset the shorter duration claims for those in these occupation classes, resulting in higher 

premiums for occupation classes C and D compared to occupation classes A and B.

6.4 Flowgraph Models -  An Alternative Pricing Methodology

Flowgraph models provide an alternative to multiple state model methodology for analysing 

systems where individuals move from one state to another through time. Diagramatically, 

flowgraphs look identical to multiple state models, however, they enable a greater flexibility in 

the choice of transition intensities and, in particular, they permit semi-Markov processes to be 

analysed more simply than is the case with traditional actuarial theory developed using multiple 

state Markov models.

A flowgraph consists of a number of states (outcomes) with (possibly bi-directional) arrows 

connecting those states between which transition is possible. These transitions are labelled with 

transmittances. A transmittance has two components: first, a probability that the transition will 

ultimately be made; and second, the moment generating function for the continuous random 

variable representing the time for transition between the two states. To fix ideas, we show in 

Figure 6.7 below a flowgraph that will be used for the pricing of DII contracts. Note that this 

model will be used to calculate a risk premium for a single one-year DII contract.
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From Figure 6.7, it is clear that we assume five states labelled 1,2, 3, 4 and 5. We will label the 

transmittance between states i and j  as ptJM tj (t), where pij is the probability of transition

between state i and state j  and M tj (t ) is the moment generating function for the random variable 

representing the amount of time spent from entry to state i until transition to state j.

ILL (2) 
STATE 4

ILL (1) 
STATE 2

STATE 5

ABLE 
STATE 1

RECOVERED 
STATE 3

Figure 6.7 Flowgraph for Disability Income Insurance Contract

In order to use the above model for pricing a one-year DII contract, we aim to find a 

probabilistic description for the amount of time it takes an insured, after payment of the single 

upfront premium, to reach State 2 and State 4. These are clearly separate problems and 

flowgraph methodology (Huzarbazar, 2004) provides a solution to both problems.

Consider a flowgraph consisting of a number of states each connected with transmittances, as 

defined above. The flowgraph could consist of loops where it is possible for an individual to
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move between two states (or more) many times. Mason’s Rule gives the calculation of the MGF 

(ie transmittance since transition from input to output is guaranteed) for the waiting time from an 

input state to an output state. Mason’s rule states that the MGF from input to output, can be 

calculated using

M (s) =
i+Z,H )%«

(6 . 11)

where the L terms refer to loops in the flowgraph. As depicted, Figure 6.7 contains no loops, and 

hence Mason’s rule reduces to the sum of the products of the transmittances that link an input 

state to an output state. In this case, therefore, Mason’s Rule reduces to the simple result that the 

moment generating function of the sum of a set of mutually independent random variables is just 

the product of the individual moment generating functions.

In order that we have a single input state and a single output state in our DII flowgraph model, 

we will temporarily consider a slightly altered flowgraph, shown below in Figure 6.8.

ILL (1) 
STATE 2

ILL (2) 
STATE 4

RECOVERED 
STATE 3

END 
STATE 5

ABLE 
STATE 1

Figure 6.8 Revised Flowgraph with Single Output State
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We now determine suitable transmittances for each of the arrows shown in Figure 6.8. This 

process will draw on previous investigations reported in this thesis.

In Chapter 3, it was found that a Poisson GLM with logarithmic link function was a suitable 

model for the description of claim incidence rates. Using the constant transition intensity implied 

by that model, we will use an exponential model for the transition between states 1 and 2, as 

well as and also for the transition between states 3 and 4 in Figure 6.7. Hence we assign the 

following moment generating functions:

m '2̂ = (77- 7) ’ <6' 12)

and

MJ4(r) = ^ ,  (6 ,3 )

where \ 2 denotes the transition intensity for first onset of disability and ^deno tes the 

transition intensity for onset of subsequent disability after a previous recovery.

Transition from state 2 to 3 represents recovery. This time, we refer to results from Chapter 4, of 

this thesis and, in particular, take note of the long-term survivor mixture models fitted there. The 

models developed in that chapter showed the reduction in the hazard rate for return to work for 

lives, particularly for long duration claims, exceeding six months. Given that in Figure 6.8 we 

are only interested in transitions during the first year from state 2 to state 3 (all other recoveries 

lead to a transition to state 5), we can again assume a constant transition intensity over this first 

year. This means that we will use the same form of moment generating function as given in 

(6.12) with Ai2 replaced with A23.
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We also define the following moment generating functions:

and

(6.14)

A** ( ')  = «’ (6.15)

Expression (6.14) gives the moment generating function for the transitions into the end state 

after one year for those lives that do not make the other possible transition during that period. 

Similarly, expression (6.15) gives the moment generating function for a certain transition twenty 

years after first moving into State 5. This transition is only included to ensure that State 4 is an 

output state -  it will not affect the calculation of premiums for a DII contract under this model.

Using Mason’s Rule, from (6.11), we obtain

M ]4 (?) — P\2-P23'PmM\2 ( 0 ^ 2 3  ( ? ) ^ 3 4  ( ? )  +  P\l'Ptt 0  P 34 ) ̂ 1 2  (?) ̂ 2 3  ( ? ) ^ 3 4  (?) ̂ 5 4  (?) +

(?) M 2 5  ( ? ) ^ 5 4  (?) + P \ 5 ^ \ 5  ( ? ) ^ 5 4  (?)•
(6.16)

In order to calculate the single upfront premium we then use

1

Premium = jv ' / l2 (r)
1

d t +  JV'/l4 (?)
1 - M 4 (OUT) ( -S)

it, (6.17)

where / 12(r) and / I4(?) are the probability density functions for the time until transition from 

state 1 to state 2 and state 4, respectively, and M 2(OUT)[ - S ) and M A(0UT)( -S)  are the moment 

generating functions for transition from state 2 and state 4 to any other state in the flowgraph
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model. These moment generating functions, when evaluated at minus the continuously 

compounding rate of interest, represent the present value of $ 1 payable at the time of transition 

out of state 2 or state 4.

The expression
1 - M 2 (OUT) (-S)

therefore represents the present value of a stream of payments
S

of $1 payable continuously from when a life enters state 2 until the time of exit from state 2.

/ ]4 (r). Using Mason’s rule, we have the moment generating functions for the random variables

with each of these probability density functions. In order to approximate these density functions, 

we need a suitable inversion technique to convert moment generating functions into approximate 

probability density functions. The method we use here is the saddlepoint approximation, see for 

example, Huzarbazar (2002), Reid (1988) or Goutis et al (1999).

If X  is a random variable representing a waiting time, for example the amount of time for a life 

who has just purchased a one-year DII contract to become disabled for the first time, define

M x (?) = E^elX ), to be the moment generating function relating to an uknown density function 

f x (x).  The cumulant generating function of the random variable X  is defined as 

Kx (r) = log M x (t). The saddlepoint approximation to the density of X is

In order to be able to use (6.17) we need to be able to obtain approximations to / 12(?) and

(6.18)

where s is the saddlepoint given by the solution to the equation K'(s) = x.
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Consider specifically the approximation of /j4(jc), which is needed for our premium

calculations. To facilitate the calculations involved, Mathematica software was used to find the 

saddlepoint approximation. The first step is to find a series of saddlepoints corresponding to 

durations for which we want to approximate the density function. For premium calculation, we 

are concerned with incidences of disability that occur in the first year after initial purchase of the 

policy. We therefore calculate a vector of saddlepoints (of length 100) evenly spaced over the 

year of DII coverage. Given these saddlepoints, we then apply (6.18) to approximate the density 

function, f u (x).

In order to evaluate expression (6.17), we also need formulae for each of M 2(0UT)(t)

and M 4(OUT)(t). From Chapter 4, it is clear that a simple exponential model will not suffice here

- we clearly need a probability distribution with a reducing hazard rate. For simplicity here we 

have adopted a piecewise exponential model. Srinivas and Pitt (2004) have applied regression 

trees to the problem of determining recovery transition intensities at various claim durations. 

They estimated separate transition intensities for the first 60 days post disability onset, 61 to 183 

days, 184 days to 1.5 years, and greater than 5 years. We will assume that all claims which are 

continuing after five years cease at that time as a result of a five year benefit period.

The moment generating function for a piecewise exponential density with hazard rates given in 

Table 6.4 is
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Table 6.4 Piecewise Exponential Model Claim Recovery Intensities

The evaluation of the premium then proceeds using numerical integration techniques applied to 

(6.17). As an example, we consider the following set of parameters:

Parameter Explanation Value

Pn Probability of initial incidence of disability in a 

one-year period

0.0578

P it, Probability of recovery within a one-year period 0.8096

P m Probability of onset of subsequent disability after 0.5000
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recovery from previous disability

K Recovery transition intensity applying for the first 

60 days after onset of disability

1.491

A Recovery transition intensity applying between 61 

and 183 days after onset of disability

0.608

A Recovery transition intensity applying between 

184 and 1.5 years after onset of disability

0.784

Recovery transition intensity applying between 1.5 

years and 5 years after onset of disability

0.496

X Exponential distribution parameter for transitions 

from states 1 to 2, states 2 to 3 and states 3 to 4

2.00

Table 6.5 Example Flowgraph Model Parameters

Using Mathematica to perform the required calculations, we derive a premium of $897.21 per 

annum for a $50,000 annual income. Since the 5% incidence rate is at the higher end of 

incidence rates predicted in Chapter 3 and also high in the context of the current Australian 

industry disability table (1AD1989-93), it follows that the predicted premium is at the upper end 

of the scale for DII annual premia.

Flowgraph methods provide a number of opportunities for greater flexibility in modelling where 

multiple state models have been used frequently in the past. Their application is particularly 

suited to actuarial investigations because:

• they use moment generating functions to specify transmittances and moment generating 

functions intersect with expected present values which have been commonly used for 

premium rating and reserving in actuarial science for over a century;
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• they enable easier manipulation of non-constant transition intensities in a multi-state 

framework. In particular, any probability distribution for which the moment generating 

function has a closed form can readily be used, and density functions for the duration 

until transition between non-adjacent states can be determined using saddlepoint 

approximations.

Further application of flowgraph modelling in actuarial science is certainly possible. In 

particular, Taylor (2002) considers a four state model for weekly compensation benefits. The 

model is depicted below in Figure 6.9.

Deceased

Incapacitated Active (ie able to 
work)

Retired

Figure 6.9 Flowgraph for transitions between statuses: weekly compensation

This model is again one that is amenable to flowgraph analysis, this is particularly because the 

random variable for the time spent in a particular state before transition from that state can 

potentially be modelled using a number of standard right-skewed variates commonly used in 

survival analysis.
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

This chapter will provide an overview of the main research findings of this thesis. It will also 

provide details of some avenues for further research.

7.1 Main Research Findings in this Thesis

The generalised linear modelling analysis presented in Chapter 3 has led to considerable 

discussion amongst actuaries working both in the DII market and in the reinsurance sector. This 

discussion has centred around the development of a new industry table for claim incidence rates 

and claim termination rates which uses generalised linear modelling as opposed to multi-way 

analysis used to construct the existing Australian disability table. The analysis from that chapter 

highlighted a number of significant rating variables that should be considered in the pricing and 

reserving of DII that have not been considered in the past. These include benefit amount, 

replacement ratio and the various interactions reported in that Chapter.

Chapter 4 introduced techniques from survival analysis to the disability claim termination rate 

discussion. Models that incorporate both hazard rates for return to work and a probability of not 

ever returning to work were developed. A Generalised F mixture model was found to provide a 

very good description of claim termination rates. The results from this chapter were extended to 

the problem of premium rating and reserving.
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Chapter 5 demonstrated the use of censored regression quantile analysis, developed recently, to 

the DII claim duration arena. The most important result from that chapter was that the covariate 

sensitivities of claim termination rates do vary significantly for age, occupation class and 

deferred period. This finding has clear implications for actuaries who are required to recommend 

provisions that life insurers should hold in respect of existing disability claims. If an insurer 

were to rely on traditional mean regression analysis to assess the impact of increasing age on 

claim termination rates, their analysis would underestimate the true impact of age for a claim 

that has been in force for longer than, say, six months. Typically, insurers’ balance sheets will 

contain material provisions in respect of DII claims for which the claimant has been receiving 

benefits for a long period before the date of valuation. The results of Chapter 5 and the method 

illustrated there are therefore commercially useful for insurers required to value the liabilities 

associated with a portfolio of diverse DII contracts.

Chapter 6 considered the actuarial pricing function in some depth. First a multiple state model, 

with piecewise exponential transition intensities for claim termination rates and constant claim 

incidence rates was developed. The duration-dependent transition intensities for claim 

termination meant that a tree based model was useful where nodes of the tree represent 

claimants at different claim durations. This numerical approach was useful for calculation of 

premium rates in the presence of semi-Markov claim termination rates, however the procedure 

described there quickly becomes very complex if greater refinement to the claim recovery rates 

is desired.

To overcome this problem, the second half of Chapter 6 provided an alternative solution to the 

problem of premium rating using flowgraph models. Flowgraphs are a very recent innovation in 

statistical science and their application to date has mainly been in the area of biostatistics. 

Importantly, innovative use of flowgraphs enables the user to calculate actuarially justified
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premium rates when transition intensities between the able, ill and dead states use probability 

models that have a closed form moment generating function.

7.2 Avenues for Further Research

The impact of economic variables, such as the level of interest rates and unemployment in 

particular, on the performance of DII business, have long been considered important by 

practising actuaries. The quantification of the impact of these variables on transition intensities 

and lapse rates for DII is an area that has not received much attention in Australia. This provides 

an interesting area for future research, and within the premium rating framework of flowgraph 

models, the impact of economic variables on both premium rates and recommended liability 

valuations could be quantified.

The use of generalised additive models which enable the use of a range of smoothers (for 

example, kernel smoothers and local linear loess estimates) provides another avenue for further 

research in this area.

The variability of predicted insurance outcomes is one that has received far less attention than it 

should have in the past in actuarial science. This thesis has taken a step towards solving this 

problem with its presentation of stochastic reserving results and pricing strategies. The bootstrap 

has recently been applied by general insurance actuaries in the determination of the variability of 

outstanding claims provisions. There is certainly scope to extend the work presented in Chapter 

6 using flowgraphs and a nonparametric bootstrap based method. This work has the potential to 

give insurers a greater understanding of the extent of variability and probability of adequacy of 

the reserves held in their balance sheets.
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The mortality rates of DII policyholders is another area that has received little attention. The 

reason for this is the lack of credible data that has been available on this context in Australia 

until recently. Research in the UK, based on limited amounts of data, has suggested that 

mortality rates for disabled lives are duration dependent, (Waters, 1991). In particular, rates of 

mortality are considerably higher than the equivalent level for insured lives, for those disabled 

lives that have only become disabled in the last few months. The Australian disability database 

continues to collect information on cause of claim. There is certainly scope to investigate 

mortality rates as a function of cause of claim and duration of disability. The results from such a 

study, would have clear implications for pricing and reserving of DII contracts and could also 

contribute to the pricing of life risk products in Australia.
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APPENDIX 3.1 -  Data Specifications

AI. Claims Excluded

Country Not Australia

Deferment Sickness Not Equal Deferment Period Accident 

Sickness Only cover or Accident Only cover

A2. Summarised Characteristics

Deferment

The original data has deferment period in days. These were summarized as follows.

Actual Duration Assumed Duration

0 -1 0 7 days

11-24 14 days

25-31 30 days

32-61 60 days

6 2 -92 90 days

93-183 180 days

184 + 365 days
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CoTerminus

If Benefit Period Accident = Benefit Period Sickness, then CoTerminus.

Proportionate Benefit

If at any time a claim payment is not the full benefit then the claim is recorded as Partial

Age at Claim

This is recorded in quinquennial steps starting at age 22.
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Benefit Rate

Recorded in the following bands ($ per month)

Actual Benefit A ssum ed B enefit

Rate Rate

0 - 9 9 9 500

1 0 0 0 -  1999 1,500

2000 -  2999 2,500

3000 -  3999 3,500

4000 -  4999 4,500

5000 -  5999 5,500

6000 -  6999 6,500

7000 -  9999 8,500

1 0 0 0 0 -1 4 9 9 9 12,500

1 5 0 0 0 -  19999 17,500

20000 - 25,000

Claim Cause

All claims had an alpha cause coded. These were summarized as follows in order to 

reduce the number of possible cells in the data matrix. The choice of combinations was 

deliberately made based on the average claim duration as shown in the Disability 

Committee Reports so as to give three broad groups -  short, medium and long.

127



Summarised Original

Cause Causes

V None

recorded

W A, H, I, J, K,

L

X C, D, F, G,

M. N, P, R, S

Y B, E,

Z Accident

The original causes are classified according to the WHO International Classification of 

Diseases as follows.

A Infective and parasitic diseases

B Neoplasms (MN = Malignant and BN = Benign)

C Endocrine, Nutritional and Metabolic diseases

D Diseases of the blood and blood forming organs

E Mental disorders

F Diseases of the Nervous system and sense organs

G Diseases of the circulatory system

H Diseases of the respiratory system
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Diseases of the digestive system

Diseases of the genito-urinary system

Diseases of Pregnancy and childbirth

Diseases of the skin and subcutaneous tissue

Diseases of the musculoskeletal system and connective tissue

Congenital anomalies

Senility and ill defined conditions

Accidents, poisoning and violence (external causes)

AIDS related complex and full blown AIDS

HIV+ and Lymphadenopathy



Appendix 3.2 -  Detailed Actual / Experience Results

3.2.1 Experience by Calendar Year of Exposure

Year Expected Actual Index
1980 19 26 74%
1981 79 92 86%
1982 226 261 87%
1983 515 651 79%
1984 629 715 88%
1985 763 826 92%
1986 1202 1146 105%
1987 2090 2381 88%
1988 2142 2580 83%
1989 2352 2513 94%
1990 3261 2681 122%
1991 4895 4625 106%
1992 5148 5082 101%
1993 6447 5736 112%
1994 6960 6369 109%
1995 7737 5840 132%
1996 8166 5658 144%
1997 7490 5862 128%
1998 5477 4830 113%

Total 65600 57874 113%
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3.2.2. Experience by Gender and Year

Male Female
Year Expected Actual Index Expected Actual Index
1980 19 26 72% 0 0 0%
1981 75 79 95% 5 13 35%
1982 202 240 84% 24 21 115%
1983 453 599 76% 62 52 119%
1984 561 646 87% 67 69 98%
1985 685 757 91% 77 69 112%
1986 1094 1030 106% 108 116 93%
1987 1870 2151 87% 220 230 96%
1988 1864 2295 81% 278 285 98%
1989 2058 2220 93% 294 293 100%
1990 2847 2384 119% 415 297 140%
1991 4330 4104 106% 565 521 108%
1992 4442 4467 99% 707 615 115%
1993 5596 4983 112% 850 753 113%
1994 6056 5628 108% 904 741 122%
1995 6695 5143 130% 1043 697 150%
1996 7088 4972 143% 1078 686 157%
1997 6444 5117 126% 1046 745 140%
1998 4742 4270 111% 736 560 131%

Total 57120 51111 112% 8480 6763 125%
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3.2.3 Experience by Occupation and Year

Occupation Class A Occupation Class B
Year Expected Actual Index Expected Actual Index
1980 15 17 86% - - -

1981 30 27 111% 1 0 0%
1982 63 61 103% 6 6 108%
1983 138 215 64% 60 60 100%
1984 199 247 81% 70 53 131%
1985 242 260 93% 63 39 161%
1986 282 280 101% 178 70 254%
1987 445 457 97% 368 387 95%
1988 462 471 98% 365 433 84%
1989 547 549 100% 396 415 95%
1990 792 488 162% 444 366 121%
1991 1277 1117 114% 521 437 119%
1992 1486 1320 113% 484 517 94%
1993 1900 1572 121% 565 562 101%
1994 2042 1753 116% 602 606 99%
1995 2252 1564 144% 549 391 140%
1996 2348 1452 162% 409 360 114%
1997 2248 1594 141% 465 349 133%
1998 1642 1210 136% 255 190 134%

Total 18410 14654 126% 5800 5241 111%
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3.2.3 Experience by Occupation and Year (Continued)

Occu jation Class C Occupation Class D
Year Expected Actual Index Expected Actual Index
1980 1 0 0% 4 9 42%
1981 13 19 68% 36 46 78%
1982 61 57 107% 96 137 70%
1983 201 248 81% 116 128 90%
1984 176 215 82% 184 200 92%
1985 185 193 96% 273 334 82%
1986 369 284 130% 373 512 73%
1987 868 1046 83% 409 491 83%
1988 913 1128 81% 402 548 73%
1989 957 1114 86% 452 435 104%
1990 1290 1143 113% 736 684 108%
1991 1692 1642 103% 1406 1429 98%
1992 1700 1835 93% 1479 1410 105%
1993 2078 1955 106% 1904 1647 116%
1994 2440 2290 107% 1876 1720 109%
1995 2758 2083 132% 2178 1802 121%
1996 2901 2242 129% 2508 1604 156%
1997 2802 2299 122% 1976 1620 122%
1998 1988 1978 101% 1593 1452 110%
Total 23391 21771 1 0 7 % 17999 16208 1 1 1 %
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3.2.4 Experience by Deferment and Year

7 Days 14 Days
Year Expected Actual Index Expected Actual Index
1980 0 0 0 % 4 11 38%
1981 2 0 0 % 53 61 87%
1982 4 0 0 % 140 169 83%
1983 42 93 4 6 % 311 403 77%
1984 51 105 4 9 % 372 394 94%
1985 53 83 64% 469 499 94%
1986 51 70 72% 846 756 112%
1987 41 78 53% 1590 1901 84%
1988 44 66 66% 1606 2054 78%
1989 47 69 68% 1763 1897 93%
1990 39 48 80% 2351 2021 116%
1991 44 61 72% 3508 3510 100%
1992 34 36 95% 3542 3708 96%
1993 20 30 68% 4245 4002 106%
1994 35 32 109% 4497 4329 104%
1995 24 31 76% 4849 3771 129%
1996 2 4 52% 5195 3667 142%
1997 0 % 4392 3556 124%
1998 2 4 4 3 % 2959 2706 109%

Total 535 810 66% 42693 39415 108%

134



3.2.4. Experience by Deferment and Year (Continued)

30 Days 90 Days
Year Expected Actual Index Expected Actual Index
1980 7 14 5 0 % 8 1 7 6 6 %
1981 17 30 5 8 % 7 1 6 9 0 %
1982 7 4 92 8 1 % 8 0 0 %
1983 149 151 9 9 % 12 4 2 9 1 %
1984 192 2 0 9 9 2 % 13 7 1 9 0 %
1985 2 2 4 241 9 3 % 16 3 5 4 1 %
1986 2 8 0 3 0 6 9 2 % 25 14 1 8 1 %
1987 411 3 8 9 10 6 % 47 13 3 6 4 %
1988 4 5 4 4 4 5 102% 38 15 2 5 4 %
1989 5 0 2 53 2 9 4 % 41 15 2 7 3 %
1990 835 6 0 6 13 8 % 37 6 6 1 1 %
1991 1298 1041 125% 45 13 3 4 6 %
1992 1516 1316 1 1 5 % 56 22 2 5 6 %
1993 2 1 2 0 1679 126% 61 25 2 4 5 %
1994 2 3 6 6 1969 12 0 % 62 39 16 0 %
1995 2 8 0 4 2 0 1 0 140% 61 28 2 1 6 %
1996 2 9 1 0 1955 149% 60 32 18 7 %
1997 3 0 1 4 2 2 6 8 13 3 % 84 38 2 2 2 %
1998 2 4 5 3 2 0 9 2 117% 64 28 2 2 8 %

Total 21627 17345 125% 745 304 245%
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3.2.5. Experience by Disability Definition and Year

Own / Any 2 Own Any
Year Expected Actual Index Expected Actual Index Expected Actual Index
1980 3 2 153% 15 22 66% 1 2 43%
1981 23 18 127% 50 73 68% 5 1 456%
1982 100 94 107% 101 130 78% 24 37 66%
1983 340 491 69% 147 116 127% 27 44 61%
1984 384 452 85% 207 211 98% 31 52 59%
1985 452 479 94% 224 239 94% 77 108 71%
1986 624 341 183% 303 345 88% 199 356 56%
1987 1281 1449 88% 494 483 102% 222 313 71%
1988 1320 1635 81% 544 540 101% 214 299 72%
1989 1431 1582 90% 550 488 113% 308 341 90%
1990 1953 1422 137% 956 774 124% 288 413 70%
1991 2891 2843 102% 1613 1317 122% 316 365 87%
1992 2908 3073 95% 1834 1604 114% 332 333 100%
1993 3587 3231 111% 2391 1965 122% 408 489 83%
1994 3649 3498 104% 2664 2266 118% 577 540 107%
1995 3454 2681 129% 3357 2426 138% 815 610 134%
1996 3751 2601 144% 3471 2409 144% 871 573 152%
1997 3108 2346 132% 3736 2826 132% 506 541 94%
1998 2139 2135 100% 2677 1890 142% 364 447 81%

Total 33399 30373 110% 25332 20124 126% 5585 5864 9 5 %
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3.2.6. Experience by Benefit Type and Year

Level Increasing Level - Out of Working 
Hours

Year Expected Actual Index Expected Actual Index Expected Actual Index
1980 13 19 71% 6 7 81% - - -

1981 61 71 85% 19 21 89% - - -

1982 177 204 87% 50 57 88% - - -

1983 404 544 74% 111 107 103% - - -

1984 482 572 84% 143 143 100% - - -

1985 595 661 90% 166 165 100% - - -
1986 951 918 104% 248 228 109% - - -
1987 1616 1860 87% 472 521 91% - - -

1988 1522 1924 79% 617 656 94% - - -

1989 1604 1697 94% 740 816 91% 1 0 0 %
1990 2119 1843 115% 1112 838 133% 16 0 0 %
1991 2849 2795 102% 1909 1700 112% 56 83 68%
1992 2692 2844 95% 2297 2097 110% 69 86 80%
1993 3006 2921 103% 3201 2659 120% 81 70 115%
1994 3018 2884 105% 3691 3285 112% 91 100 91%
1995 3092 2451 126% 4319 3251 133% 78 51 154%
1996 3275 2369 138% 4567 3145 145% 61 70 87%
1997 2563 2085 123% 4432 3621 122% 50 52 96%
1998 1701 1627 105% 2760 2554 108% 23 22 106%

Total 31739 30289 105% 30859 25871 119% 527 534 99%
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3.2.7 Experience by Medical Evidence and Year

Medical Non Medical 3ther
Year Expected Actual Index Expected Actual Index Expected Actual Index
1980 7 7 93% 9 19 46% 4 0 0%
1981 15 10 154% 51 82 62% 13 0 0%
1982 49 53 93% 146 208 70% 32 0 0%
1983 190 281 68% 284 370 77% 41 0 0%
1984 233 345 67% 304 370 82% 92 0 0%
1985 328 411 80% 321 399 80% 113 16 706%
1986 377 590 64% 517 463 112% 285 72 395%
1987 432 560 77% 961 1088 88% 659 711 93%
1988 343 518 66% 959 1227 78% 790 787 100%
1989 329 488 67% 963 1096 88% 1010 886 114%
1990 281 283 99% 1413 1453 97% 1525 910 168%
1991 340 390 87% 2217 2387 93% 2309 1824 127%
1992 266 270 99% 1526 1465 104% 3338 3347 100%
1993 231 268 86% 1877 1713 110% 4311 3753 115%
1994 281 268 105% 2280 2273 100% 4358 3828 114%
1995 332 287 116% 2455 2185 112% 4900 3368 145%
1996 240 148 162% 2440 1908 128% 5396 3602 150%
1997 160 155 103% 2339 2300 102% 4855 3407 143%
1998 78 85 91% 1388 1238 112% 3759 3505 107%

Total 4511 5417 83% 22449 22244 101% 37788 30016 126%
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3.2.8 Experience by Coverage Type and Year

Individual Business Overheads
Year Expected Actual Index Expected Actual Index
1980 19 26 74% - - -

1981 79 92 86% - - -

1982 226 261 87% - - -

1983 515 651 79% - - -

1984 629 715 88% - - -

1985 763 826 92% 2 0 0%
1986 1202 1146 105% 6 0 0%
1987 2090 2381 88% 18 28 66%
1988 2142 2580 83% 29 21 138%
1989 2352 2513 94% 57 48 118%
1990 3261 2681 122% 86 49 175%
1991 4895 4625 106% 178 155 115%
1992 5148 5082 101% 216 200 108%
1993 6447 5736 112% 308 287 107%
1994 6960 6369 109% 226 94 241%
1995 7737 5840 132% 369 312 118%
1996 8166 5658 144% 328 265 124%
1997 7490 5862 128% 251 187 134%
1998 5477 4830 113% 195 158 123%

Total 65600 57874 113% 2269 1804 126%
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3.2.9 Experience by Contract Type and Year

Level - Guaranteed Level - Non 
Guaranteed

Stepped - 
Guaranteed

Stepped - Non 
Guaranteed

Year Exp. Actual Index Exp. Actual Index Exp. Actual Index Exp. Actual Inde
1980 12 6 199% 1 2 4 6 % 6 18 3595
1981 11 6 181% 14 19 73 % 4 0 0 % 51 67 769
1982 20 6 326% 24 36 68% 21 36 59% 161 183 889
1983 86 138 62% 81 36 226% 25 44 58% 323 433 759
1984 122 157 77 % 106 134 7 9 % 27 51 53% 374 373 100<
1985 125 133 94 % 94 132 7 2 % 73 104 70 % 470 457 103<
1986 134 127 106% 153 159 96% 166 290 57% 749 570 131*
1987 159 144 110% 331 342 97% 183 231 79 % 1418 1664 859
1988 147 144 102% 307 359 85% 191 298 64% 1497 1779 849
1989 213 142 150% 310 286 108% 200 307 65% 1629 1778 929
1990 226 294 77% 381 322 118% 194 220 88% 2461 1845 133-
1991 119 103 116% 522 432 121% 316 365 87% 3938 3725 106'
1992 160 89 180% 459 486 94% 331 333 100% 4198 4174 101'
1993 189 134 141% 469 453 104% 411 486 85% 5377 4663 115'
1994 183 138 133% 486 486 100% 585 540 108% 5705 5205 110
1995 185 112 165% 639 531 120% 830 610 136% 6084 4587 133
1996 74 48 155% 491 372 132% 894 583 153% 6707 4655 144
1997 50 23 218% 491 335 146% 514 542 95 % 6435 4962 130
1998 1 0 0 % 549 483 114% 364 447 81% 4563 3900 117

Total 2215 1944 114% 5909 5405 109% 5332 5487 97% 52145 45038 116
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3.210 Experience by No Claim Bonus and Year

No NCB Yes NCB
Year Expected Actual Index Expected Actual Index
1980 13 8 165% 6 18 33%
1981 34 16 213% 45 76 60%
1982 128 93 137% 99 167 59%
1983 417 479 87% 98 172 57%
1984 516 555 93% 113 160 71%
1985 649 700 93% 114 126 90%
1986 996 960 104% 206 186 111%
1987 1669 1930 86% 421 451 93%
1988 1613 1902 85% 529 678 78%
1989 1614 1633 99% 738 880 84%
1990 2227 1954 114% 1034 727 142%
1991 3371 3298 102% 1524 1327 115%
1992 3353 3363 100% 1796 1719 104%
1993 4418 3865 114% 2028 1871 108%
1994 4967 4445 112% 1993 1924 104%
1995 5639 4100 138% 2098 1740 121%
1996 5844 3954 148% 2322 1704 136%
1997 5244 4116 127% 2246 1746 129%
1998 3806 3565 107% 1672 1265 132%
Total 46517 40936 1 1 4 % 19083 16937 1 1 3 %
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3.2.11 Experience by Smoker Status and Year

N on Sm oker - Periodic Checks Non Sm oker
Y ear Expected Actual Index Expected Actual Index
1980 - - -

1981 - - - 0 0 0%
1982 - - - 1 0 0%
1983 - - - 3 0 0%
1984 0 0 0% 2 0 0%
1985 4 0 0% 7 0 0%
1986 57 34 168% 107 108 99%
1987 110 137 80% 328 486 68%
1988 158 210 75% 478 680 70%
1989 187 178 105% 659 730 90%
1990 209 237 88% 1125 1005 112%
1991 147 108 136% 2234 2190 102%
1992 239 192 125% 2531 2709 93%
1993 427 301 142% 3295 3172 104%
1994 595 542 110% 3745 3577 105%
1995 400 355 113% 4660 3631 128%
1996 340 333 102% 4989 3564 140%
1997 221 208 106% 4865 3930 124%
1998 316 359 88% 3501 3040 115%

Total 3411 3194 107% 32530 28822 113%
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3.2.13. Experience by CoTerminus Status and Year

Yes No
Year Expected Actual Index Expected Actual Index
1980 16 18 87% 3 8 44%
1981 34 40 84% 46 52 88%
1982 90 94 96% 136 167 81%
1983 245 295 83% 270 356 76%
1984 323 373 87% 306 342 89%
1985 427 462 92% 336 364 92%
1986 780 740 105% 422 406 104%
1987 1510 1772 85% 580 609 95%
1988 1599 1976 81% 543 604 90%
1989 1814 2039 89% 538 474 114%
1990 2367 2236 106% 894 445 201%
1991 3115 2882 108% 1780 1743 102%
1992 3199 3144 102% 1950 1938 101%
1993 3940 3627 109% 2507 2109 119%
1994 4748 4318 110% 2212 2051 108%
1995 5379 3948 136% 2359 1892 125%
1996 5247 3859 136% 2919 1799 162%
1997 5083 4058 125% 2407 1804 133%
1998 3832 3305 116% 1645 1525 108%

Total 43748 39186 112% 21853 18688 117%
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3.2.14. Experience by Benefit Period and Year

2 Years 5 Years Expiry
Year Expected Actual Index Expected Actual Index Expected Actual Index
1980 0 1 45% 0 1 6% 18 24 77%
1981 25 27 94% 3 8 37% 45 55 81%
1982 66 99 67% 18 9 204% 120 150 80%
1983 118 190 62% 63 53 119% 283 380 74%
1984 157 181 87% 58 79 73% 353 433 82%
1985 238 285 84% 95 82 116% 361 422 86%
1986 539 538 100% 89 121 74% 471 446 106%
1987 1090 1326 82% 171 227 75% 692 720 96%
1988 1169 1551 75% 181 235 77% 675 690 98%
1989 1335 1564 85% 203 217 94% 684 670 102%
1990 1725 1595 108% 339 267 127% 990 696 142%
1991 2553 2690 95% 581 571 102% 1424 1102 129%
1992 2384 2566 93% 687 721 95% 1660 1475 113%
1993 2789 2758 101% 1152 1056 109% 2019 1626 124%
1994 2832 2889 98% 1311 1266 104% 2264 1819 124%
1995 2776 2283 122% 1457 1078 135% 2562 1694 151%
1996 2944 2200 134% 1521 978 155% 2380 1574 151%
1997 2547 2119 120% 1291 1022 126% 2198 1385 159%
1998 1677 1677 100% 722 684 106% 2082 1420 147%

Total 26965 26539 102% 9942 8675 115% 21281 16781 127%
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3.2.15. Experience by Benefit Proportion and Year

Full Benefit Partial Benefi
Year Expected Actual Index Expected Actual Index
1980 19 26 74% 8 4 194%
1981 79 92 86% 26 13 196%
1982 226 261 87% 45 30 151%
1983 515 651 79% 115 73 158%
1984 629 715 88% 212 104 204%
1985 763 826 92% 307 181 170%
1986 1202 1146 105% 446 227 197%
1987 2090 2381 88% 658 448 147%
1988 2142 2580 83% 773 478 162%
1989 2352 2513 94% 896 557 161%
1990 3261 2681 122% 1133 539 210%
1991 4895 4625 106% 1135 524 217%
1992 5148 5082 101% 1031 428 241%
1993 6447 5736 112% 1507 851 177%
1994 6960 6369 109% 1423 742 192%
1995 7737 5840 132% 1671 722 231%
1996 8166 5658 144% 1598 534 299%
1997 7490 5862 128% 1428 663 215%
1998 5477 4830 113% 648 555 117%

Total 65600 57874 113% 15060 7673 196%
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3.2.16. Experience by Age at Claim

Age At 
Claim

Expected Actual Index

22 1075 1144 94%
27 5485 5678 97%
32 9466 9134 104%
37 12345 10994 112%
42 12743 11131 114%
47 11233 9314 121%
52 7362 6115 120%
57 4110 3145 131%
62 1734 1186 146%
67 47 33 144%
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3.2.17. Experience by Duration

Duration
(Months)

Expected Actual Index

0 3554 3431 104%
1 17171 15581 110%
2 12891 16796 77%
3 6983 7644 91%
4 4501 3369 134%
5 3106 2159 144%
6 2970 1586 187%
7 2162 1075 201%
8 1469 811 181%
9 1038 664 156%
10 824 544 151%
11 688 464 148%
12 941 430 219%
13 775 334 232%
14 645 289 223%
15 520 249 209%
16 401 188 213%
17 334 179 187%
18 509 167 305%
19 409 152 269%
20 347 121 287%
21 294 98 300%
22 262 109 240%
23 229 146 157%

24-35 2023 873 232%
36-47 279 203 137%
48-59 127 106 120%
60-95 122 98 124%
96-119 27 8 335%
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3.2.18. Experience by Year of Policy Commencement

Year
of

Entry

Expected Actual Index

1970 34 24 142%
1971 35 45 77%
1972 40 34 119%
1973 92 50 184%
1974 114 118 96%
1975 169 106 159%
1976 213 202 105%
1977 236 218 108%
1978 339 284 119%
1979 622 570 109%
1980 1228 1115 110%
1981 1587 1501 106%
1982 2218 1989 111%
1983 2011 1724 117%
1984 2270 2147 106%
1985 3496 3368 104%
1986 4049 4028 101%
1987 3590 3581 100%
1988 3909 3609 108%
1989 4765 4121 116%
1990 5236 4425 118%
1991 5600 4781 117%
1992 5722 4611 124%
1993 5692 4653 122%
1994 4954 3989 124%
1995 3795 3113 122%
1996 2201 2113 104%
1997 1107 1068 104%
1998 273 280 97%
Total 65597 57867 113%
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3.2.19. Experience by Benefit Size

Benefit
$ /

Month

Expected Actual Index

500 6627 6117 108%
1500 27482 26447 104%
2500 20600 17271 119%
3500 5424 4159 130%
4500 2138 1594 134%
5500 1088 716 152%
6500 728 429 170%
8500 691 400 173%
12500 289 209 138%
17500 81 38 213%
25000 452 494 91%
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APPENDIX 3.3 - GLM

Poisson model 

Response: termrate

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid.
Dev

NULL 265483 213643.9
ageclaim 1 3063.29 265482 210580.6
claimcauseW 1 4007.16 265481 206573.4
claimcauseX 1 809.86 265480 205763.6
claimcauseY 1 3349.97 265479 202413.6
duration 1 42495.61 265478 159918.0
sqrt(duration) 1 64.70 265477 159853.3
male 1 274.89 265476 159578.4
occupationA 1 235.89 265475 159342.5
occupationB 1 21.89 265474 159320.6
occupationC 1 5.86 265473 159314.8
smoker 1 0.66 265472 159314.1
deferment 1 728.86 265471 158585.2
benefitrate 1 28.57 265470 158556.7
APeriod 1 206.85 265469 158349.8
ageclairmduration 1 22.76 265468 158327.1
ageclaim:sqrt(duration) 1 36.00 265467 158291.1

Call: glm(formula = termrate ~ ageclaim + claimcauseW + claimcauseX + claimcauseY + duration 
+ sqrt(duration) + ageclaim + ageclaim * duration
+ ageclaim * sqrt(duration) + male + occupationA + occupationB + occupationC + smoker + 
deferment + benefitrate + APeriod, family = poisson(link = log), weights = COpen)

Deviance Residuals:
Min IQ Median 3Q Max 

-3.938976 -0.5558429 -0.3008938 -0.06589518 7.022873
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Coefficients:

Value Std. Error t value
(Intercept) 3.23e+001 2.29e+000 14.11
ageclaim -8.08e-003 1.08e-003 -7.49
claim causeW 3.71e-001 1,08e-002 34.18
claim causeX -3.29e-001 1.04e-002 -31.72
claim causeY -5.61e-001 1.55e-002 -36.12
duration -1.86e-001 1.03e-002 -18.06
sqrt(duration) 2.58e-001 4.51e-002 5.73
m ale 1.41e-001 1.36e-002 10.32
occupationA -1.35e-001 1.29e-002 -10.51
occupation!! -8.56e-002 1.50e-002 -5.70
occupationC -4.24e-003 9.99e-003 -0.42
sm oker -6.05e-002 8.75e-003 -6.92
deferm ent 2.38e-001 9.18e-003 25.96
benefitrate -7.60e-006 1.86e-006 -4.09
APeriod -1.67e-002 1.15e-003 -14.51
ageclaim :duration 1.82e-003 2.41e-004 7.55
ageclaim :sqrt(duration) 1.07e-003 -6.09 -6.52e-003

(Dispersion Parameter for Poisson family taken to be 1 ) 

Null Deviance: 213643.9 on 265483 degrees of freedom 

Residual Deviance: 158291.1 on 265467 degrees of freedom 

Number of Fisher Scoring Iterations: 6
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Appendix 5.1 -Selected S-Plus Functions -  Chapter Five

> out2
function(a) {

for(i in 3:(length(coxcrv$time)-l)) {
A«-max(coxcrv 1 $surv[coxcrv 1 $surv<coxcrv$surv[i]])
B«-min(coxcrv 1 $surv[coxcrv 1 $surv>coxcrv$surv[i]])
C 1 «-coxcrv 1 $time[coxcrv 1 $surv==A]
D 1 «-coxcrv 1 $time[coxcrv 1 $surv==B]
timeout[i]«-log(D 1 )*(coxcrv$surv[i]-A)/(B-A)+log(C 1 )*(B-coxcrv$surv[i])/(B-A) 
derivcvout[i]«-timeout[i]-log(coxcrv$time[i])
E 1 =length(coxcrv$surv[coxcrv$surv>0.8])
Fl=length(coxcrv$surv[coxcrv$surv>0.6])-El
G 1 =length(coxcrv$surv[coxcrv$surv>0.4])-(E 1+F1)
H 1 =length(coxcrv$surv[coxcrv$surv>0.2])-(E 1+F1+G1)
11 =length(coxcrv$surv[coxcrv$surv>0])-(E 1+F1+G1+H1) 
Elmean«-mean(derivcvout[l :E1 ])
Fl mean«-mean(deri vcvout[(E 1 +1 ):(E 1+F1)])
G 1 mean«-mean(deri vc vout[(E 1+F1 +1): (E1+F1+G1)])
H 1 mean«-mean(deri vc vout[(E 1+F1+G1+1): (E1+F1+G1+H1)])
11 mean«-mean(deri vc vout[(E 1+F1+G1+H1 +1): (E1+F1+G1+H1 +11)])

> out3
function(a) {

for(j in 1:84) {
durn3a«-dum3[( 100*(j-1 )+ l):(100*j+300)] 
terminatea « -  terminated 100*(j-l)+l):(100*j+300)] 
agea « -  age[( 100*(j -1)+1):(100*j+300)] 
occupnewa«-occupnew[( 100*(j-1)+1):(100*j+300)] 
defpdnewa«-defpdnew[( 100*(j-1)+1):(100*j+300)] 
tem pcox«-
coxph(Surv(dum3a,terminatea)~agea+occupnewa-i-defpdnewa,data=termrates2)
tem pcrq«-
crq(Surv(log(dum3a),terminatea)~agea-i-occupnewa+defpdnewa,data=termrates2)
coxcrv«-summary(survfit(tempcox,newdata=temp))
coxcrv 1 «-summary (survfit(tempcox,newdata=temp 1))
out2(5)
E 1 m eans[j]«-El mean 
Flm eans[j]«-Flm ean 
G 1 means[j]«-G 1 mean 
H 1 means[j]«-H 1 mean 
11 m eans[j]«-11 mean
M 1 «-length(tempcrq[tempcrq$sol[ 1 ,]<0.2])
N 1 «-length(tempcrq[tempcrq$sol[ 1 ,]<0.4])-M 1 
0 1 «-length(tempcrq[tempcrq$sol[ 1 ,]<0.6])-(Ml+N 1)
P 1 «-length(tempcrq[tempcrq$sol[ 1 ,]<0.8])-(M 1+N1 +01)
Q 1 «-length(tempcrq[tempcrq$sol[ 1 ,]< 1 ])-(M 1+N1 +01+P1)
M 1 mean«-mean(tempcrq$sol[3,(l :M 1)])
N 1 mean«-mean(tempcrq$sol [3,((M 1 +1 ):(M 1+N1))])
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0 1 mean«-mean(tempcrq$sol[3,((M 1+N1 + 1 ):(M 1+N1+ 0 1))])
P 1 mean«-mean(tempcrq$sol [3 ,((M 1+N1+ 0 1 +1): (M1+N1+ 0 1+P1))]) 
ifelse(M 1+N1+ 0 1+P1 +1 <=length(tempcrq$sol[3,]),Q 1 m ean«- 
mean(tempcrq$sol[3 ,((M 1+N1+ 0 1+P1 +1): (M1+N1+ 0 1+P1+Q1 ))]),Q 1 m ean«-0) 
M 1 means[j]«-M  1 mean 
N 1 means[j]«-N 1 mean 
0 1 m eans[j]« -01 mean 
Plm eans[j]«-Plm ean 
Q 1 means[j]«-Q 1 mean 
R 1 m eans[j]«-El means[j]-M 1 means[j]
S1 m eans[j]«-Fl means[j]-N 1 meansjj]
Tlmeans[j]«-Glmeans[j]-01means[j]
U 1 means[j]«-H 1 means [j]-PI means [j]
Vlmeans[j]«-Ilmeans[j]-Qlmeans[j]
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Appendix 6.1 Selected S-Plus Functions -  Chapter Six

> major
function(ra, rb, rc, rd, re, incrate, intrate, benefit)
{

trpl(ra, incrate) 
trp2(rb, incrate) 
trp3(rc, incrate) 
trp4(rd, incrate)
recrate5 « -  exp(sum(glmcoef * re))
nodel23(pl, p2, pi 1, p 12, p21, p22, p i l l ,  pi 12, p 121, pl22, p211, p212, p221, p222) 
node4(pl 111, pi 112, pi 121, pi 122, p l211, pl212, p i221, p i222, p2111, p2112, p2121,

p2122,p2211, p2212, p2221, p2222)
probA(Al, C l, Dl)
probB(Al, Cl, Dl)
probC(A2, C2, D2)
probD(Al, C l, D l, A2, C2, D2)
probE(A2, C2, D2, A5, C5, D5)
probF(Al, C l, D l, A2, C2, D2, A5, C5, D5)
probG(Al, C l, D l, A2, C2, D2, A5, C5, D5, A7, C7, D7)
probH(A2, C2, D2, A5, C5, D5, A7, C7, D7)
probI(A5, C5, D5, A7, C7, D7)
probJ(Al, Cl, D l, A5, C5, D5, A7, C7, D7)
probK(Al, C l, D l, A5, C5, D5, A7, Cl,  D7)
Ecalc(N42, N44, N46, N48, N410, N412, N414, N416)
probL(E90, E210, E270, E330)
probM(E90, E210, E270, E330)
probN(E90, E210, E270, E330)
probO(E90, E210, E270, E330)
probP(5)
premium(intrate, benefit) 
prem

}

> trpl
function(cov, incrate)
{

recrate 1 « -  exp(sum(glmcoef * cov))
Ml « -  matrix(c( - (incrate + 0.000568), recrate 1, 0, incrate, - (recrate 1 + 0.000568), 0, 

0.000568, 0.000568, 0), nrow = 3)
A1 « -  eigen(Ml)$vectors 
Cl « -  solve(Al)
Dl « -  eigen(Ml)$values
diagl « -  diag(c(exp((Dl[l] * 60)/365), exp((Dl[2] * 60)/365), exp((Dl[3] * 60)/365))) 
tempi « -  A1 %*% diagl %*% Cl 
pi « -  tempi[1, 1] 
p2 « -  tempi [1,2]

}
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> probA
function(a, z, d)

for(i in 1:60) {
diagtempl A « -  diag(c(exp((d[l] * i)/365), exp((d[2] * i)/365), exp((d[3] * i)/365))) 
tempi A « -  a %*% diagtempl A %*% z 
probl2[i] « -  templA[l, 2]

> nodel23
function(a, b, c, d, e, f, g, h, i, j, k, 1, m, n) 
{

N il « - a  
N 12 « -  b 
N21 « -  a * c 
N22 « -  a * d 
N23 « -  b * e 
N24 « -  b * f 
N31 « -  a * c * g 
N32 « -  a * c * h 
N33 « -  a * d * i 
N34 « -  a * d * j 
N35 « -  b * e * k 
N36 « -  b * e * 1 
N37 « -  b * f * m 
N38 « -  b * f * n

}

> premium
function(intrate, benefit)
{

for(i in 1:1825) {
x[i] « -  ((benefit/365) * prob 12[i])/(( 1 + intrate)A((intrate * i)/365))

}
prem « -  sum(x)

}
>
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