455 research outputs found

    VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011

    Get PDF
    High-resolution radio observations are ideal for constraining the value of physical parameters in the inner regions of active-galactic-nucleus jets and complement results on multiwavelength (MWL) observations. This study is part of a wider multifrequency campaign targeting the nearby TeV blazar Markarian 421 (z=0.031), with observations in the sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). We investigate the jet's morphology and any proper motions, and the time evolution of physical parameters such as flux densities and spectral index. The aim of our wider multifrequency campaign is to try to shed light on questions such as the nature of the radiating particles, the connection between the radio and gamma-ray emission, the location of the emitting regions and the origin of the flux variability. We consider data obtained with the Very Long Baseline Array (VLBA) over twelve epochs (one observation per month from January to December 2011) at 15 GHz and 24 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. The structure of Mrk 421 is dominated by a compact (~0.13 mas) and bright component, with a one-sided jet detected out to ~10 mas. We identify 5-6 components in the jet that are consistent with being stationary during the 12-month period studied here. Measurements of the spectral index agree with those of other works: they are fairly flat in the core region and steepen along the jet length. Significant flux-density variations are detected for the core component. From our results, we draw an overall scenario in which we estimate a viewing angle 2{\deg} < theta < 5{\deg} and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are {\delta}r ~3 and {\delta}h.e. ~14.Comment: 9 pages, 4 figure

    Mechanics of Hydrogenated Amorphous Carbon Deposits from Electron-Beam-Induced Deposition of Paraffin Precursor

    Get PDF
    Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having more sp2- than sp3-bonded carbon.Nanoindentation tests revealed a hardness of ∼4GPa and an elastic modulus of 30–60GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example applicatio

    Measuring the brightness temperature distribution of extragalactic radio sources with space VLBI

    Get PDF
    We have used VSOP space very long baseline interferometry observations to measure the brightness temperature distribution of a well-defined sub-set of the Pearson-Readhead sample of extragalactic radio sources. VLBI which is restricted to Earth-diameter baselines is not generally sensitive to emitting regions with brightness temperatures greater than approximately 101210^{12} K, coincidentally close to theoretical estimates of brightness temperature limits, 1011101210^{11} - 10^{12} K. We find that a significant proportion of our sample have brightness temperatures greater than 101210^{12} K; many have unresolved components on the longest baselines, and some remain completely unresolved. These observations begin to bridge the gap between the extended jets seen with ground-based VLBI and the microarcsecond structures inferred from intraday variability, evidenced here by the discovery of a relationship between intraday variability and VSOP-measured brightness temperature, likely due to the effects of relativistic beaming. Also, lower limits on jet Lorentz factors, estimated from space VLBI observations, are starting to challenge numerical simulations that predict low Lorentz factor jets.Comment: 4 pages + 1 figure, ApJ letters, accepte

    A parsec-scale wobbling jet in the high-synchrotron peaked blazar PG 1553+113

    Get PDF
    Context. The detection of quasi-periodic variability in active galactic nuclei in general, and in blazars in particular, is key to our understanding of the origin and nature of these objects as well as their cosmological evolution. PG 1553+113 is the first blazar showing an approximately two-year quasi-periodic pattern in its γ-ray light curve, which is also revealed at optical frequencies. Aims: Such quasi-periodicity might have a geometrical origin, possibly related to the precessing nature of the jet, or could be intrinsic to the source and related to pulsational accretion flow instabilities. In this work we investigate and characterise the high-resolution radio emission properties of PG 1553+113 on parsec scales in order to differentiate between these different physical scenarios. Methods: We monitored the source with the very long baseline array (VLBA) at 15, 24, and 43 GHz during an entire cycle of γ-ray activity in the period 2015-2017, with a cadence of about 2 months, both in total and polarised intensity. We constrained the jet position angle across the different observing epochs by investigating the total intensity ridge lines. Results: We find a core-dominated source with a limb-brightened jet structure extending for ∼1.5 mas in the northeast direction whose position angle varies in time in the range ∼40°-60°. No clear periodic pattern can be recognized in the VLBA light curves during 2015-2017 or in the 15 GHz Owens Valley Radio Observatory light curve during the period 2008-2018. The core region polarisation percentage varies in the range ∼1-4%, and the polarisation angle varies from being roughly parallel to roughly transverse to the jet axis. We estimate a rotation measure value in the core region of ∼-1.0 ± 0.4 × 104 rad m-2. The brightness temperature (TB) is found to decrease as the frequency increases with an intrinsic value of ∼1.5 × 1010 K and the estimated Doppler factor is ∼1.4. Conclusions: Although the jet wobbling motion indicates that geometrical effects can produce an enhanced emission through the Doppler boosting modulation, additional mechanisms are required in order to account for the quasi-periodic variability patterns observed in γ rays. The intrinsic TB value indicates that the total energy in the core region is dominated by the magnetic field

    The radio structure of ultra-high-energy synchrotron peak BL Lacs

    Full text link
    We present the results of EVN and MERLIN 5 GHz observations of nine ultra-high-energy synchrotron peak BL Lacs (UHBLs) selected as all BL Lacs with \textbf{log (νpeak/Hz)>20\nu_{\rm peak}/ \rm Hz)>20} from Nieppola et al.. The radio structure was investigated for these sources, in combination with the available VLBA archive data. We found that the core-jet structure is detected in five sources, while four sources only have a compact core on pc scale. The core of all sources shows high brightness temperature (with mean and median values \textbf{log (Tb/K)11T_{\rm b} / {\rm K}) \sim11}, which implies that the beaming effect likely present in all sources. When the multi-epoch VLBI data are available, we found no significant variations either for core or total flux density in two sources (2E 0414+0057 and EXO 0706.1+5913), and no evident proper motion in 2E 0414+0057, while the superluminal motion is likely detected in EXO 0706.1+5913. Our sources are found to be less compact than the typical HBLs in Giroletti et al, by comparing the ratio of the VLBI total flux to the core flux at arcsec scale. Combining all our results, we propose that the beaming effect might be present in the jets of UHBLs, however, it is likely weaker than that of typical HBLs. Moreover, we found that UHBLs could be less Doppler beamed versions of HBLs with similar jet power, by comparing the distribution of redshift, and radio luminosities. The results are in good consistence with the expectations from our previous work.Comment: 14 pages, 15 figures and 5 tables. Accepted by MNRA

    Chandra Discovery of a 100 kpc X-ray Jet in PKS 0637--752

    Get PDF
    The quasar PKS 0637-753, the first celestial X-ray target of the Chandra X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to 12 arcsec west of the quasar, coincident with the inner portion of the jet previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous (~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753 was on-axis and ACIS-S was near the optimum focus. For the inner portion of the radio jet, the X-ray morphology closely matches that of new ATCA radio images at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space VLBI mission show structure aligned with the X-ray jet, placing important constraints on the X-ray source models. HST images show that there are three small knots coincident with the peak radio and X-ray emission. Two of these are resolved, which we use to estimate the sizes of the X-ray and radio knots. The outer portion of the radio jet, and a radio component to the east, show no X-ray emission to a limit of about 100 times lower flux. The X-ray emission is difficult to explain with models that successfully account for extra-nuclear X-ray/radio structures in other active galaxies. We think the most plausible is a synchrotron self-Compton (SSC) model, but this would imply extreme departures from the conventional minimum-energy and/or homogeneity assumptions. We also rule out synchrotron or thermal bremsstrahlung models for the jet X-rays, unless multicomponent or ad hoc geometries are invoked.Comment: 5 Pages, 2 Figures. Submitted to Ap. J. Letter

    VLBI observations of seven BL Lac objects from RGB sample

    Full text link
    We present EVN observations of seven BL Lac objects selected from the RGB sample. To investigate the intrinsic radiation property of BL Lac objects, we estimated the Doppler factor with the VLA or MERLIN core and the total 408 MHz luminosity for a sample of 170 BL Lac objects. The intrinsic (comoving) synchrotron peak frequency was then calculated by using the estimated Doppler factor. Assuming a Lorentz factor of 5, the viewing angle of jets was constrained. The high-resolution VLBI images of seven sources all show a core-jet structure. We estimated the proper motions of three sources with the VLBI archive data, and find that the apparent speed increases with the distance of components to the core for all of them. In our BL Lacs sample, the Doppler factor of LBLs is systematically larger than that of IBLs and HBLs. We find a significant anti-correlation between the total 408 MHz luminosity and the intrinsic synchrotron peak frequency. However, the scatter is much larger than for the blazar sequence. Moreover, we find a significant positive correlation between the viewing angle and the intrinsic synchrotron peak frequency. The BL Lac objects show a continuous distribution on the viewing angle. While LBLs have a smaller viewing angle than that of IBLs and HBLs, IBLs are comparable to HBLs. We conclude that the intrinsic synchrotron peak frequency is not only related to the intrinsic radio power (though with a large scatter), but also to the viewing angle for the present sample.Comment: 22 pages,15figures, published by A&

    The TeV blazar Markarian 421 at the highest spatial resolution

    Get PDF
    We report the results obtained for the AGN Markarian 421 by model-fitting the data in the visibility plane, studing the proper motion of jet components, the light curve, and the spectral index of the jet features. We compare the radio data with optical light curves obtained at the Steward Observatory, considering also the optical polarization information. Mrk 421 has a bright nucleus and a one-sided jet extending towards the north-west for a few parsecs. The model-fits show that brightness distribution is well described using 6-7 circular Gaussian components, four of which are reliably identified at all epochs; all components are effectively stationary except for component D, at ~0.4 mas from the core, whose motion is however subluminal. Analysis of the light curve shows two different states, with the source being brighter and more variable in the first half of 2011 than in the second half. The highest flux density is reached in February. A comparison with the optical data reveals an increase of the V magnitude and of the fractional polarization simultaneous with the enhancement of the radio activity.Comment: 11 pages, 6 figure

    Parsec Scale Properties of Markarian 501

    Full text link
    We present the results of a high angular resolution study of the BL Lac object Markarian 501 in the radio band. We consider data taken at 14 different epochs, ranging between 1.6 GHz and 22 GHz in frequency, and including new Space VLBI observations obtained on 2001 March 5 and 6 at 1.6 and 5 GHz. We study the kinematics of the parsec-scale jet and estimate its bulk velocity and orientation with respect to the line of sight. Limb brightened structure in the jet is clearly visible in our data and we discuss its possible origin in terms of velocity gradients in the jet. Quasi-simultaneous multi-wavelength observations allow us to map the spectral index distribution and to compare it to the jet morphology. Finally, we estimate the physical parameters of the parsec-scale jet.Comment: accepted for publication in ApJ; 24 pages with 17 figures (fig. 1 and fig. 2 available only as .jpg files

    Parsec scale polarization properties of the TeV blazar Markarian 421

    Get PDF
    In this work we present a polarization analysis at radio frequencies of Markarian 421, one of the closest (z=0.03) TeV blazars. The observations were obtained, both in total and in polarized intensity, with the Very Long Baseline Array (VLBA) at 15, 24, and 43 GHz throughout 2011, with one observation per month (for a total of twelve epochs). We investigate the magnetic field topology and the polarization structure on parsec scale and their evolution with time. We detect polarized emission both in the core and in the jet region, and it varies with frequency, location and time. In the core region we measure a mean fractional polarization of about 1-2%, with a peak of about 4% in March at 43 GHz; the polarization angle is almost stable at 43 GHz, but it shows significant variability in the range 114-173 deg at 15 GHz. In the jet region the polarization properties show a more stable behavior; the fractional polarization is about 16% and the polarization angle is nearly perpendicular to the jet axis. The higher EVPA variability observed at 15 GHz is due both to a variable Faraday rotation effect and to opacity. The residual variability observed in the intrinsic polarization angle, together with the low degree of polarization in the core region, could be explained with the presence of a blend of variable cross-polarized subcomponents within the beam.Comment: 6 pages, 4 figures, proceedings of the 12th European VLBI Network Symposium and Users Meeting (7-10 October 2014, Cagliari, Italy
    corecore