1,282 research outputs found
Inertial and retardation effects for dislocation interactions
A new formulation for the equation of motion of interacting dislocations is
derived. From this solution it is shown that additional coupling forces, of
kinetic and inertial origin, should be considered in Dislocation Dynamics (DD)
simulations at high strain rates. A heuristic modification of this general
equation of motion enables one to introduce retardation into inertial and
elastic forces, in accordance with a progressive rearrangement of fields
through wave propagation. The influence of the corresponding coupling terms and
retardation effects are then illustrated in the case of dislocation dipolar
interaction and coplanar annihilation. Finally, comparison is made between the
modified equation of motion and a precise numerical solution based on the
Peierls-Nabarro Galerkin method. Good agreement is found between the
Peierls-Nabarro Galerkin method and the EoM including retardation effects for a
dipolar interaction. For coplanar annihilation, it is demonstrated that an
unexpected mechanism, involving a complex interplay between the core of the
dislocations and kinetics energies, allows a renucleation from the completely
annihilated dislocations. A description of this phenomenon that could break the
most favourable reaction between dislocations is proposed
Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell
Following some recent unexpected hints of neutron production in setups like
high-voltage atmospheric discharges and plasma discharges in electrolytic
cells, we present a measurement of the neutron flux in a configuration similar
to the latter. We use two different types of neutron detectors,
poly-allyl-diglicol-carbonate (PADC, aka CR-39) tracers and Indium disks. At
95% C.L. we provide an upper limit of 1.5 neutrons cm^-2 s^-1 for the thermal
neutron flux at ~5 cm from the center of the cell. Allowing for a higher energy
neutron component the largest allowed flux is 64 neutrons cm^-2 s^-1. This
upper limit is two orders of magnitude smaller than what previously claimed in
an electrolytic cell plasma discharge experiment. Furthermore the behavior of
the CR-39 is discussed to point our possible sources of spurious signals.Comment: 4 pages, 3 figure
Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source
We report radiation hardness tests performed at the Frascati Neutron
Generator on silicon Photo-Multipliers, semiconductor photon detectors built
from a square matrix of avalanche photo-diodes on a silicon substrate. Several
samples from different manufacturers have been irradiated integrating up to
7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been
recorded during the neutron irradiation and a gradual deterioration of their
properties was found to happen already after an integrated fluence of the order
of 10^8 1-MeV-equivalent neutrons per cm^2.Comment: 7 pages, 6 figures, Submitted to Nucl. Inst. Meth.
Monitoramento de um Argissolo Vermelho sob produção de eucalipto de treze e vinte anos.
bitstream/item/30417/1/boletim-71.pd
Unified theory for Goos-H\"{a}nchen and Imbert-Fedorov effects
A unified theory is advanced to describe both the lateral Goos-H\"{a}nchen
(GH) effect and the transverse Imbert-Fedorov (IF) effect, through representing
the vector angular spectrum of a 3-dimensional light beam in terms of a 2-form
angular spectrum consisting of its 2 orthogonal polarized components. From this
theory, the quantization characteristics of the GH and IF displacements are
obtained, and the Artmann formula for the GH displacement is derived. It is
found that the eigenstates of the GH displacement are the 2 orthogonal linear
polarizations in this 2-form representation, and the eigenstates of the IF
displacement are the 2 orthogonal circular polarizations. The theoretical
predictions are found to be in agreement with recent experimental results.Comment: 15 pages, 3 figure
Quantifying transgressive coastal changes using UAVs: dune migration, overwash recovery, and barrier flooding assessment and interferences with human and natural assets
The advantages derived from the use of Uncrewed Aerial Vehicles (UAVs) are well-established: they are cost-effective and easy to use. There are numerous environmental applications, particularly when monitoring contexts characterized by rapid morphological changes and high rates of sediment transport, such as coastal areas. In this paper, three different case studies of survey and monitoring with high resolution and accuracy obtained through the use of UAVs are presented; these concern transgressive coastal sites. Results allow for the definition and quantification of coastal landforms and processes, including: (i) The anatomy of a parabolic dune and the rate of landward migration that could interfere with a tourist settlement; (ii) The mode and timing of morphological recovery and realignment of a barrier island overwashed by storm surge episodes; and (iii) The potential flood risk of a progradational spit that is a nesting site of a species of migratory breeding birds of conservation concern. The results demonstrate and confirm that, through a good coupling of drone-sensed quality data and accurate topographic control, quantitative estimates that are useful in assessing the impacts of natural processes involving both human and natural assets can be obtained
Carbono e atividade da biomassa microbiana de um argissolo sob plantio direto de milho e de mamona.
bitstream/item/30404/1/boletim-66.pd
Metodologias de extração e avaliação semi quantitativa da expressão de genes de metabolismo secundário do milho (Zea mays L.).
bitstream/item/30587/1/boletim-117.pd
- …