2,033 research outputs found

    Estimating spatial and temporal variations in solar radiation within Bordeaux winegrowing region using remotely sensed data

    No full text
    International audienceAims: This paper presents a study solar radiation spatial and temporal variations in Bordeaux winegrowing area, for a 20 year period (1986-2005). Methods and results: Solar radiation data was retrieved from the HelioClim-1 database, elaborated from Meteosat satellite images, using the Heliosat-2 algorithm. Daily data was interpolated using ordinary kriging to produce horizontal solar radiation maps at a 500 m resolution. Using a digital elevation model, high resolution daily solar radiation maps with terrain integration were then produced for the period 2001-2005, at a 50 m resolution. The long term (20 years) analysis of solar radiation at low spatial resolution (500 m) showed a west to east decreasing gradient within Bordeaux vineyards. Mean August-to-September daily irradiation values, on horizontal surface, were used to classify Bordeaux winegrowing areas in three zones: low, medium, and high solar radiation areas. This initial zoning was upscaled at 50 m resolution, applying a local correction ratio, based on 2001-2005 solar radiation on inclined surface analysis. Grapevine development and maturation potential of the different zones of appellation of origin of Bordeaux winegrowing area are discussed in relation with this zoning. 2 Conclusions: Solar radiation variability within Bordeaux winegrowing area is mainly governed by terrain slopes and orientations, which induce considerable variations within the eastern part of Bordeaux vineyards. Significance and impact of the study: Solar radiation has a major impact on vineyard water balance, grapevine development and berry ripening. However, irradiation data is seldom available in weather stations records. This paper underline the interest of high resolution cartography of solar radiation, using satellite sensing and terrain effect integration, for agroclimatic studies in viticulture

    Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step

    No full text
    International audienceSolar radiation is an important climatic variable for assessing reference evapotranspiration (E0), but it is seldom available in weather station records. Meteosat satellite images processed with the Heliosat-2 method provide the HelioClim-1 database, which displays spatialized solar radiation data at a daily time step for Europe and Africa. The aim of the present work was to investigate the interest of satellite-sensed solar radiation for E0 calculation, where air temperature is the sole local weather data available. There were two study areas in Southern France. One (Southwest, SW) is characterized by Oceanic climate and the other (Southeast, SE) by Mediterranean climate. A data set of daily values for 19 weather stations spanning five years (2000–2004) was used. First, a sensitivity analysis of the Penman–Monteith formula to climate input variables was performed, using the Sobol' method. It shows that E0 is mainly governed by solar radiation during summer, and by wind speed during winter. Uncertainties of HelioClim-1 solar radiation data and their repercussions on E0 formulae were evaluated, using the FAO-56 Penman–Monteith formulae (PM) and radiation-based methods (Turc, TU; Priestley–Taylor, PT and Hargreaves-Radiation, HR). It was shown that HelioClim-1 data slightly underestimate solar radiation and provide relative RMSE (root mean square error) of 20% of the mean annual value for SW and 14% for SE. The propagation of HelioClim-1 data uncertainties is small in PM but considerable in radiation methods. Four estimation methods were then compared to PM data: the 1985 Hargreaves formula (HT) based on air temperature only; TU, PT and HR, based on air temperature and satellite-sensed solar radiation. Radiation methods were more precise and more accurate than HT, with RMSE ranging from 0.52 mm to 0.86 mm against 0.67–0.96 mm. These results suggest that using satellite-sensed solar radiation may improve E0 estimates for areas where air temperature is the only available record at ground level

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    Get PDF
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties

    VvGOLS1 and VvHsfA2 are Involved in the Heat Stress Responses in Grapevine Berries

    Get PDF
    Among various environmental factors, temperature is a major regulator affecting plant growth, development and fruit composition. Grapevine is the most cultivated fruit plant throughout the world, and grapes are used for wine production and human consumption. The molecular mechanisms involved in grapevine tolerance to high temperature, especially at the fruit level, are poorly understood. To better characterize the sensitivity of berries to the microenvironment, high temperature conditions were locally applied to Vitis vinifera Cabernet Sauvignon clusters. Two genes, VvGOLS1 and VvHsfA2, up-regulated by this treatment, were identified and further characterized. The expression profile of VvGOLS1 correlated positively with galactinol accumulation in heat-stressed berries. However, no galactinol derivatives, such as raffinose and stachyose, accumulated upon heat stress. Heterologous expression of VvGOLS1 in Escherichia coli showed that it encodes a functional galactinol synthase. Transient expression assays showed that the heat stress factor VvHsfA2 transactivates the promoter of VvGOLS1 in a heat stress-dependent manner. Taken together, our results highlight the intrinsic capacity of grape berries to perceive heat stress and to initiate adaptive responses, suggesting that galactinol may play a signaling role in these response

    The effects of a moderate grape temperature increase on berry secondary metabolites

    Get PDF
    Context and purpose of the study: Like in other wine producing regions around the world, Bordeaux vineyards already experience the effects of climate change. Recent trends as well as model outputs for the future strongly support an increase of average and extreme temperatures. For the maturation period, this increase will by far exceed mean atmospheric temperature increase, as the ripening period will occur earlier in hotter climatic conditions. Therefore, a detrimental secondary metabolism response is expected in grape berries, and of particular concern are the impacts on phenolics and aromas and aroma precursors. The effects of high temperatures on secondary metabolism control have been partly characterized for phenolics, however mostly in artificial growing conditions, while little is known with respect to aromas. A better understanding of how high temperatures influence grape berry secondary metabolites could help vineyard growers to adapt to climate change and maintain wine quality. Material and methods: A two-year field study was carried out in 2015 and 2016 in a vineyard in Bordeaux, France. Two treatments, heated (H) and control (C), were applied to two varieties, Cabernet-Sauvignon and Sauvignon blanc, from fruit-set to maturity. Field heating was achieved by a very local greenhouse effect applied to the bottom of the rows, by enclosing most of the underlying soil surface by polycarbonate shields. As the training system was vertically trellised, the heated volume surrounded most of the bunches but did not disturb most of the leaves in the canopy. This simple and robust setup allowed an increase of berry temperature by about +1.5°C in mean value, up to +5°C at times during clear sky days. This moderate increase of temperature was indicative of the predicted future climatic conditions for the mid-21st century. Berry samples were collected at 4 time points from bunch closure to maturity for each cultivar and treatment. Primary and secondary metabolites were measured in whole berries or skins. Results and conclusions: With this moderate temperature increase, primary metabolite content in berries did not change significantly. In H samples, anthocyanins were reduced and tannins increased before veraison, and both decreased thereafter. H samples also exhibited lower concentrations of some amino acids, especially alanine, serine and phenylalanine. IBMP (2-methoxy-3-isobutylpyrazine) concentrations were also reduced in H samples of Cabernet-Sauvignon, in both seasons, especially at bunch closure stage, but the differences diminished at full maturity. For thiol 3-sulfanyl hexanol precursors, H samples again exhibited much lower concentrations for both varieties, with weak differences at early stages that increased at later stages (up to -70% decline at maturity in 2015 for Sauvignon blanc). These results demonstrate the potential negative impact of elevated temperature on polyphenols and aroma quality of grape berries. Significance and impact of the study: For viticulture to adapt to new climatic conditions, the negative impacts of high temperature on secondary metabolites and aromas, and therefore on wine quality, need to be contemplated. Thus, already established or new vineyard plantings must prepare and consider practices able to mitigate these impacts, for instance practices that increase bunch shading

    Estimating Bulk Stomatal Conductance in Grapevine Canopies

    Get PDF
    In response to changes in their environments, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both the soil and plant. To help with future characterization of this dynamic response, a simplified method is presented for determining bulk stomatal conductance based on the crop canopy energy flux model by Shuttleworth and Wallace using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. The methodology presented respects the energy flux dynamics of vineyards with open canopies, while avoiding problematic measurements of soil heat flux and boundary layer conductance needed by other methods, which might otherwise interfere with ongoing vineyard management practices. Based on this method and measurements taken on several vines in a non-irrigated vineyard in Bordeaux France, bulk stomatal conductance was estimated on 15-minute intervals from July to mid-September 2020 producing values similar to those presented for vineyards in the literature. Time-series plots of this conductance show significant diurnal variation and seasonal decreases in conductance associated with increased vine water stress as measured by predawn leaf water potential. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, emphasizing the usefulness of characterizing its dynamic response for the purpose of estimating vine canopy transpiration in water use models.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress

    Get PDF
    In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable.Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    An operational model for capturing grape ripening dynamics to support harvest decisions

    Get PDF
    Grape ripening is a critical phenological phase during which many metabolites that impact wine quality accumulate in the berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices. Together with the timing of mid-veraison, this duration determines when grapes can be harvested. Viticulturists and winemakers monitor the sugar-to-total acidity ratio (S/TA) during grape ripening and start harvesting grapes when this ratio reaches the optimum value for the desired wine style. The S/TA ratio evolves linearly as a function of thermal summation during the first four weeks following the onset of ripening. The linearity of the evolution of the S/TA ratio as a function of thermal time during the first four weeks following mid-veraison is applied in this study on two large data sets encompassing (1) 53 varieties studied during 10 years with two to four replicates for each combination of year and cultivar and (2) two varieties, cultivated on three soil types over 13 years. Grape ripening speed is highly variable. The effects of the year impact ripening speed more than the effects of the soil or the variety, although all three effects are highly significant. Grape ripening speed decreases with berry weight and also varies with vine water status. By using this approach, viticulturists and winemakers can assess four weeks after mid-veraison, for each individual vineyard parcel, at what speed grape ripening progresses. Combined with precise mid-veraison scoring, expertise from previous vintages and complementary approaches like sensory assessment of berries, it allows harvest date estimates to be fine-tuned. The results of this study can also be used to identify slow ripening varies, which are better performing in warm climates and, thus, better adapted to climate change

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
    • …
    corecore