5 research outputs found

    The role of p53 in the chemotherapeutic responses to cisplatin, doxorubicin and 5-fluorouracil treatment

    Get PDF
    A panel of tumour models used extensively for in vivo evaluation of new drugs was characterised for their p53 status. Basal p53 protein levels were measured by immunodetection on both formalin-fixed tumour tissue and from protein extracts of fresh tumours. High levels of nuclear-specific staining, indicative of p53 mutation, was seen in 15/25 tumours, with the remainder showing intermittent or no staining. The functional status of p53 cDNA from these tumours was assayed within the functional analysis of separated alleles in yeast (F.A.S.A.Y.) reporter system. The cDNA from those tumours with high levels of p53 protein showed 14/15 failing to activate the reporter gene. The cDNA from tumours with low or non-detectable p53 levels showed 8/10 with wild-type p53. Tumours were grown subcutaneously in mice (n=10). Each mouse was given maximum tolerated doses for either doxorubicin, 5-fluorouracil or cisplatin. Tumour volumes were measured daily, alongside untreated controls. The specific growth delay values for each tumour were separated into two groups, those with functional p53 (wild-type) and those without (mutant and null status). The Mann-Whitney U test was performed on the groups of data, to evaluate differences in their response on the basis of p53 status. Cisplatin was moderately active against tumours with wild-type and mutant p53 genes with no significant difference seen between both groups. However, a significant difference in specific growth delay was seen between the two groups when treated with doxorubicin or 5-fluorouracil (P=0.05), indicating a role for p53 protein in modulating the in vivo efficacy of these agents

    Anticancer activity of electron-deficient metal complexes against colorectal cancer in vitro models

    No full text
    YesAn evaluation of the in vitro cytotoxicity of nine electron-deficient half-sandwich metal complexes towards two colorectal cancer cell lines (HCT116 p53+/+, HCT116 p53-/-) and one normal prostate cell line (PNT2) is presented herein. Three complexes were found to be equally cytotoxic towards both colorectal cancer cell lines, suggesting a p53-independent mechanism of action. These complexes are 12 to 34 more potent than cisplatin against HCT116 p53+/+ and HCT116 p53-/- cells. Furthermore, they were found to exhibit little or no cytotoxicity towards PNT2 normal cells, with selectivity ratios greater than 50. To gain an insight into the potential mechanisms of action of the most active compounds, their effects on the expression levels of a panel of genes were measured using qRT-PCR against treated HCT116 p53+/+ and HCT116 p53-/- cells, and cell cycle analysis was carried out.The Royal Society grant UF150295, The Academy of Medical Sciences grant SFB003\117
    corecore