864,693 research outputs found

    'Now you know what you’re doing right and wrong!' Peer feedback quality in synchronous peer assessment in secondary education

    Get PDF
    This study explores the effects of peer assessment (PA) practice on peer feedback (PF) quality of 11th grade secondary education students (N= 36). The PA setting was synchronous: anonymous assessors gave immediate PF using mobile response technology during 10 feedback occasions. The design was quasi-experimental (experimental vs. control condition) in which students in one condition received a scaffold to filter out relevant information they received. It was expected that this filter-out scaffold would influence PF quality in subsequent tasks in which they were assessors. PF content analysis showed that offering multiple PF occasions improved PF quality: messages contained more negative verifications and informative and suggestive elaborations after the intervention. However, no effects were found of filtering out relevant information on PF quality. Moreover, students’ perceived peer feedback skills improved which was in correspondence with their actual quality improvement over time. Additionally, the perceived usefulness of the received feedback was rated high by all participants

    Dendritic spike induction of postsynaptic cerebellar LTP

    Get PDF
    The architecture of parallel fiber (PF) axons contacting cerebellar Purkinje neurons (PNs) retains spatial information over long distances. PF synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to plastic changes that decode the PF input organization is unknown. By combining voltage and calcium imaging, we show that PF-elicited calcium signals, mediated by voltage-gated calcium channels, increase non-linearly during high-frequency bursts of electrically constant calcium spikes because they locally and transiently saturate the endogenous buffer. We demonstrate that these non-linear calcium signals, independently of NMDA or metabotropic glutamate receptor activation, can induce PF long-term potentiation (LTP). Two-photon imaging in coronal slices revealed that calcium signals inducing LTP can be observed by stimulating either the PF or the ascending fiber pathway. We propose that local dendritic calcium spikes, evoked by synaptic potentials, provide a unique mechanism to spatially decode PF signals into cerebellar circuitry changes

    Regulation of the formation and water permeability of endosomes from toad bladder granular cells.

    Get PDF
    Osmotic water permeability (Pf) in toad bladder is regulated by the vasopressin (VP)-dependent movement of vesicles containing water channels between the cytoplasm and apical membrane of granular cells. Apical endosomes formed in the presence of serosal VP have the highest Pf of any biological or artificial membrane (Shi and Verkman. 1989. J. Gen. Physiol. 94:1101-1115). We examine here: (a) the influence of protein kinase A and C effectors on transepithelial Pf (Pfte) in intact bladders and on the number and Pf of labeled endosomes, and (b) whether endosome Pf can be modified physically or biochemically. In paired hemibladder studies, Pfte induced by maximal serosal VP (50 mU/ml, 0.03 cm/s) was not different than that induced by 8-Br-cAMP (1 mM), forskolin (50 microM), VP + 8-Br-cAMP, or VP + forskolin. Pf was measured in endosomes labeled in intact bladders with carboxyfluorescein by a stopped-flow, fluorescence-quenching assay using an isolated microsomal suspension; the number and Pf (0.08-0.11 cm/s, 18 degrees C) of labeled endosomes was not different in bladders treated with VP, forskolin, and 8-Br-cAMP. Protein kinase C activation by 1 microM mucosal phorbol myristate acetate (PMA) induced submaximal bladder Pfte (0.015 cm/s) and endosome Pf (0.022 cm/s) in the absence of VP, but had little effect on maximal Pfte and endosome Pf induced by VP. However, PMA increased by threefold the number of apical endosomes with high Pf formed in response to serosal VP. Pf of endosomes containing the VP-sensitive water channel decreased fourfold by increasing membrane fluidity with hexanol or chloroform (0-75 mM); Pf of phosphatidylcholine liposomes (0.002 cm/s) increased 2.5-fold under the same conditions. Endosome Pf was mildly pH dependent, strongly inhibited by HgCl2, but not significantly altered by GTP gamma S, Ca, ATP + protein kinase A, and phosphatase action. We conclude that: (a) water channels cycled in endocytic vesicles are functional and not subject to physiological regulation, (b) VP and forskolin do not have cAMP-independent cellular actions, (c) activation of protein kinase C stimulates trafficking of water channels, but does not increase the number of apical membrane water channels induced by maximal VP, and (d) water channel function is sensitive to membrane fluidity. By using VP and PMA together, large quantities of endosomes containing the VP-sensitive water channel are labeled with fluid-phase endocytic markers

    Enhanced Andreev reflection in gapped graphene

    Full text link
    We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene which presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN\Delta_N enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ\Delta_N\gg \mu, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.Comment: 7.2 pages, 5 figures, accepted for publication in Phys. Rev.

    Functional Integral Representation of the Pauli-Fierz Model with Spin 1/2

    Full text link
    A Feynman-Kac-type formula for a L\'evy and an infinite dimensional Gaussian random process associated with a quantized radiation field is derived. In particular, a functional integral representation of e^{-t\PF} generated by the Pauli-Fierz Hamiltonian with spin \han in non-relativistic quantum electrodynamics is constructed. When no external potential is applied \PF turns translation invariant and it is decomposed as a direct integral \PF = \int_\BR^\oplus \PF(P) dP. The functional integral representation of e^{-t\PF(P)} is also given. Although all these Hamiltonians include spin, nevertheless the kernels obtained for the path measures are scalar rather than matrix expressions. As an application of the functional integral representations energy comparison inequalities are derived.Comment: This is a revised version. This paper will be published from J. Funct. Ana

    Low temperature structural effects in the (TMTSF)2_2PF6_6 and AsF6_6 Bechgaard salts

    Full text link
    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2_2PF6_6 and (TMTSF)2_2AsF6_6 (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)2_2PF6_6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2_2PF6_6-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 102^2 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6_6 and AsF6_6 salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {\theta}E_E = 8.3 K and {\theta}E_E = 6.7 K for the PF6_6-D12 and AsF6_6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2_2PF6_6 is dominated by the librational motion of the PF6_6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {\theta}E_E = 50 K and {\theta}E_E = 76 K for the PF6_6-D12 and PF6_6-H12 salts, respectively
    • …
    corecore