1,836 research outputs found

    Study of olivines from Omolon and Seymchan meteorites using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution

    Full text link
    Study of olivine from Omolon and Seymchan meteorites was performed using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. X-ray diffraction patterns were measured at room temperature while Mössbauer spectra were measured at 295 and 90 K. The orthorhombic crystal lattice parameters were evaluated for olivine from Omolon and Seymchan. These parameters appeared to be different for olivines from both meteorites. Mössbauer spectral components related to 57Fe in crystallographically non-equivalent sites M1 and M2 in both olivines were determined and its Mössbauer hyperfine parameters were evaluated. Some differences in the tendencies of temperature dependence of spectral parameters and small variations of 57Fe quadrupole splitting in both M1 and M2 sites of olivines from Omolon and Seymchan were found. On the basis of Mössbauer parameters and chemical data, the temperatures of equilibrium cation distribution were evaluated for both olivines. © 2012 American Institute of Physics

    THE INVESTIGATION OF DIATOMS DEMONSTRATING DEATH CAUSED BY DROWNING

    Get PDF
    No abstrac

    Preparation and characterization of Bi26–2xMn2xMo10O69-d and Bi26.4Mn0.6Mo10–2yMe2yO69-d(Me = V, Fe) solid solutions

    Get PDF
    Received: 06.06.2017; accepted: 23.06.2017; published: 14.07.2017.Single phase samples of bismuth molybdate, Bi26Mo10O69, doped with Mn on the bismuth sublattice and V, Fe on the molybdenum sublattice were found to crystallize in the triclinic Bi26Mo10O69 structure at low doping levels and in the monoclinic Bi26Mo10O69 structure - at higher dopant concentration. The assumption that all Mn ions have an oxidation state of +2 was confirmed by means of magnetic measurement results analysis using Curie-Weiss law. Conductivity was investigated using impedance spectroscopy. The conductivity of Bi26.4Mn0.6Mo9.6Fe0.4O69-d was 1.2*10-2 S*cm-1 at 973 K and 2.2*10-4 S*cm-1 at 623 K, and the conductivity of Bi26.4Mn0.6Mo9.2V0.8O69-d was 2.2*10-3 S*cm-1 at 973 K and 2.2*10-5 S*cm-1 at 623 K

    Sociology, labour and transition in post-Soviet Russia: A view from within

    Get PDF
    For almost 20 years, since the early 1990s, Professor Simon Clarke led multiple international research projects in Russia, China and Vietnam studying labour relations, enterprise restructuring and household economics under post-socialist transition. Breaking out of post-socialist scholarship’s narrow confines, both social and ideological, he led an exploration of the void opened by former Soviet Union disintegration reconnecting with those who brought the brunt of it. Equally unique among western scholars was his promotion of a vast network of former Soviet Union researchers and activists, later formalised in the Institute for Comparative Research in Labour Relations. Here, for the first time, some of its leading scholars reflect on his legacy, methods and ever-lasting contribution to the advancement of sociology and social activism in Russia. Their accounts convey the radically alternative character of the overall project, returning both achievements and limitations. In substantive terms, the emerging picture confirms the indeterminacy and complexity of Clarke’s original findings: no linear development from ‘the subsumption of labour under capital’ to ‘familiar patterns of class conflict’ has occurred. Instead, growing labour protests follow labour degradation and restructuring, a strong state becoming the arbiter in the stand-off between neoliberalism and workers’ resistance

    Interplay between lattice, orbital, and magnetic degrees of freedom in the chain-polymer Cu(II) breathing crystals

    Full text link
    The chain-polymer Cu(II) breathing crystals C21H19CuF12N4O6 were studied using the x-ray diffraction and ab initio band structure calculations. We show that the crystal structure modification at T=146 K, associated with the spin crossover transition, induces the changes of the orbital order in half of the Cu sites. This in turn results in the switch of the magnetic interaction sign in accordance with the Goodenough-Kanamori-Andersen theory of the coupling between the orbital and spin degrees of freedom.Comment: 6 pages, 7 figure

    Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression

    Get PDF
    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg–0.6Mn–0.11Si–0.23Fe–0.03Cr–0.02Cu–0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s–1. The average size of crystallites in the alloy was 180–460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased
    corecore