26,928 research outputs found
NASA metrology information system: A NEMS subsystem
the NASA Metrology Information Systems (NMIS) is being developed as a standardized tool in managing the NASA field Center's instrument calibration programs. This system, as defined by the NASA Metrology and Calibration Workshop, will function as a subsystem of the newly developed NASA Equipment Management System (NEMS). The Metrology Information System is designed to utilize and update applicable NEMS data fields for controlled property and to function as a stand alone system for noncontrolled property. The NMIS provides automatic instrument calibration recall control, instrument historical performance data storage and analysis, calibration and repair labor and parts cost data, and instrument user and location data. Nineteen standardized reports were developed to analyze calibration system operations
Near Infrared Spectroscopy of Young Brown Dwarfs in Upper Scorpius
Spectroscopic follow-up is a pre-requisite for studies of the formation and
early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared
spectroscopy of 30 candidate members of the young Upper Scorpius association,
selected from our previous survey work. All 24 high confidence members are
confirmed as young very low mass objects with spectral types from M5 to L1,
15-20 of them are likely brown dwarfs. This high yield confirms that brown
dwarfs in Upper Scorpius can be identified from photometry and proper motions
alone, with negligible contamination from field objects (<4%). Out of the 6
candidates with lower confidence, 5 might still be young very low mass members
of Upper Scorpius, according to our spectroscopy. We demonstrate that some very
low mass class II objects exhibit radically different near infrared (0.6 -
2.5micron) spectra from class III objects, with strong excess emission
increasing towards longer wavelengths and partially filled in features at
wavelengths shorter than 1.25micron. These characteristics can obscure the
contribution of the photosphere within such spectra. Therefore, we caution that
near infrared derived spectral types for objects with discs may be unreliable.
Furthermore, we show that the same characteristics can be seen to some extent
in all class II and even a significant fraction of class III objects (~40%),
indicating that some of them are still surrounded by traces of dust and gas.
Based on our spectra, we select a sample of objects with spectral types of M5
to L1, whose near-infrared emission represents the photosphere only. We
recommend the use of these objects as spectroscopic templates for young brown
dwarfs in the future.Comment: 12 pages, 9 figures, Accepted in MNRA
Aerodynamic design of the contoured wind-tunnel liner for the NASA supercritical, laminar-flow-control, swept-wing experiment
An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them
Stability of the Submillimeter Brightness of the Atmosphere Above Mauna Kea, Chajnantor and the South Pole
The summit of Mauna Kea in Hawaii, the area near Cerro Chajnantor in Chile,
and the South Pole are sites of large millimeter or submillimeter wavelength
telescopes. We have placed 860 GHz sky brightness monitors at all three sites
and present a comparative study of the measured submillimeter brightness due to
atmospheric thermal emission. We report the stability of that quantity at each
site.Comment: 6 figure
On the soft X-ray spectrum of cooling flows
Strong evidence for cooling flows has been found in low resolution X-ray
imaging and spectra of many clusters of galaxies. However high resolution X-ray
spectra of several clusters from the Reflection Grating Spectrometer (RGS) on
XMM-Newton now show a soft X-ray spectrum inconsistent with a simple cooling
flow. The main problem is a lack of the emission lines expected from gas
cooling below 1--2 keV. Lines from gas at about 2--3 keV are observed, even in
a high temperature cluster such as A 1835, indicating that gas is cooling down
to about 2--3 keV, but is not found at lower temperatures. Here we discuss
several solutions to the problem; heating, mixing, differential absorption and
inhomogeneous metallicity. Continuous or sporadic heating creates further
problems, including the targetting of the heat at the cooler gas and also the
high total energy required. So far there is no clear observational evidence for
widespread heating, or shocks, in cluster cores, except in radio lobes which
occupy only part of the volume. The implied ages of cooling flows are short, at
about 1 Gyr. Mixing. or absorption, of the cooling gas are other possibilities.
Alternatively, if the metals in the intracluster medium are not uniformly
spread but are clumped, then little line emission is expected from the gas
cooling below 1 keV. The low metallicity part cools without line emission
whereas the strengths of the soft X-ray lines from the metal-rich gas depend on
the mass fraction of that gas and not on the abundance, since soft X-ray line
emission dominates the cooling function below 2 keV.Comment: 5 pages, with 2 figures, submitted to MNRA
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats
Release of NO(x) from sunlight-irradiated midlatitude snow
Photochemical production and release of gas-phase NO(x) (NO + NO2) from the natural snowpack at a remote site in northern Michigan were investigated during the Snow Nitrogen and Oxidants in Winter study in January 1999. Snow was collected in an open 34 L chamber, which was then sealed with a transparent Teflon cover and used as an outdoor flow and reaction chamber. Significant increases in NO(x) mixing ratio were observed in synthetic and ambient air pulled through the sunlit chamber. [NO(x)] enhancements were correlated to ultraviolet sunlight intensity, reaching ~300 pptv under partially overcast midday, mid-winter conditions. These findings are consistent with NO(x) production from photolysis of snowpack NO3 -; the observed NO(x) release implies production of significant amounts of OH within the snow. Snowpack NO3 - photolysis may therefore significantly alter boundary layer levels of both NO(x) and oxidized compounds over wide regions of the atmosphere
Diagnostics of the structure of AGN's broad line regions with reverberation mapping data: confirmation of the two-component broad line region model
We re-examine the ten Reverberation Mapping (RM) sources with public data
based on the two-component model of the Broad Line Region (BLR). In fitting
their broad H-beta lines, six of them only need one Gaussian component, one of
them has a double-peak profile, one has an irregular profile, and only two of
them need two components, i.e., a Very Broad Gaussian Component (VBGC) and an
Inter-Mediate Gaussian Component (IMGC). The Gaussian components are assumed to
come from two distinct regions in the two-component model; they are Very Broad
Line Region (VBLR) and Inter-Mediate Line region (IMLR). The two sources with a
two-component profile are Mrk 509 and NGC 4051. The time lags of the two
components of both sources satisfy ,
where and are the lags of the two components while
and represent the mean gas velocities of the two regions,
supporting the two-component model of the BLR of Active Galactic Nuclei (AGN).
The fact that most of these ten sources only have the VBGC confirms the
assumption that RM mainly measures the radius of the VBLR; consequently, the
radius obtained from the R-L relationship mainly represent the radius of VBLR.
Moreover, NGC 4051, with a lag of about 5 days in the one component model, is
an outlier on the R-L relationship as shown in Kaspi et al. (2005); however
this problem disappears in our two-component model with lags of about 2 and 6
days for the VBGC and IMGC, respectively.Comment: 7 pages, 5 figures. Accepted for publication in the Special Issue of
Science in China (G) "Astrophysics of Black holes and Related Compact
Objects
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats
Application of Risk Informed Decision Making to Highly Reliable Three Dimensionally Woven Thermal Protection System for Mars Sample Return
The NASA Risk Informed Decision Making process is used to assess a trade space of three dimensionally woven thermal protection systems for application to the Mars Sample Return Earth Entry Vehicle. Candidate architectures are assessed based on mission assurance, technical development, cost, and schedule risk. Assessment methodology differed between the architectures, utilizing a four-point quantitative scale for mission assurance and technical development and highly tailored PERT techniques for cost and schedule. Risk results are presented, in addition to a review of RIDM effectiveness for this application
- …