36,435 research outputs found

    Low Frequency Gravitational Waves from Black Hole MACHO Binaries

    Get PDF
    Nakamura, Sasaki, Tanaka, and Thorne have recently estimated the initial distribution of binary MACHOs in the galactic halo assuming that the MACHOs are primordial half solar mass black holes, and considered their coalescence as a possible source for ground-based interferometer gravitational wave detectors such as LIGO. Evolving their binary distribution forward in time to the present, the low-frequency (10^{-5} < f < 10^{-1} Hz) spectrum of gravitational waves associated with such a population of compact binaries is calculated. The resulting gravitational waves would form a strong stochastic background in proposed space interferometers such as LISA and OMEGA. Low frequency gravitational waves are likely to become a key tool for determining the properties of binaries within the dark MACHO population.Comment: 8 pages + 2 ps figures; AASTe

    The Shape of Dark Matter Haloes IV. The Structure of Stellar Discs in Edge-on Galaxies

    Get PDF
    We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FitSKIRT software package. Using FitSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to accurately measure both the scale length and scale height of the stellar disc, plus the shape parameters of the bulge. By combining this data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but have not been able to model the stellar bulge reliably. Our sample consists for the most part of slow rotating galaxies, and we find that the average dust layer is much thicker than what is reported for faster rotating galaxies.Comment: Accepted for publication by Monthly Notices RAS. Hi-res. version available at www.astro.rug.nl/~vdkruit/Petersetal-IV.pd

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2_2 interface

    Get PDF
    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2_2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured gg-factors. Here, the HF spectra measured of different SiC MOSFETs are compared and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC_\textrm{bC}) center and the silicon vacancy (VSi_\textrm{Si}) demonstrates that the PbC_\textrm{bC} center is a more suitable candidate to explain the observed HF spectra.Comment: Accepted for publication in the Journal of Applied Physic

    Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-shot Learning

    Full text link
    While billions of non-English speaking users rely on search engines every day, the problem of ad-hoc information retrieval is rarely studied for non-English languages. This is primarily due to a lack of data set that are suitable to train ranking algorithms. In this paper, we tackle the lack of data by leveraging pre-trained multilingual language models to transfer a retrieval system trained on English collections to non-English queries and documents. Our model is evaluated in a zero-shot setting, meaning that we use them to predict relevance scores for query-document pairs in languages never seen during training. Our results show that the proposed approach can significantly outperform unsupervised retrieval techniques for Arabic, Chinese Mandarin, and Spanish. We also show that augmenting the English training collection with some examples from the target language can sometimes improve performance.Comment: ECIR 2020 (short

    Eccentricities of Double Neutron Star Binaries

    Full text link
    Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, which are surprisingly low for binaries that survive a supernova explosion that we believe imparts a significant kick to the neutron star. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), assuming all double neutron stars are equally as probable to be discovered as binary pulsars, we find that highly eccentric, coalescing DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for coalescing DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of such DNS. We discuss the implications of our conclusions for DNS merger rate estimates of interest to ground-based gravitational-wave interferometers. We find that, although orbital evolution due to gravitational radiation affects the eccentricity distribution of the observed sample, the associated upwards correction factor to merger rate estimates is rather small (typically 10-40%).Comment: 9 pages, 8 figures, accepted by ApJ. Figures reduced and some content changed, references adde

    Particle-Based Mesoscale Hydrodynamic Techniques

    Full text link
    Dissipative particle dynamics (DPD) and multi-particle collision (MPC) dynamics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal fluctuations. To understand the advantages of these types of mesoscale simulation techniques in more detail, we propose new two methods, which are intermediate between DPD and MPC -- DPD with a multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The key features are applying a Langevin thermostat to the relative velocities of pairs of particles or multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD is derived analytically, in very good agreement with the results of numerical simulations.Comment: 7 pages, 2 figures, 1 tabl

    QCD Corrections to Electroweak Vector Boson Scattering at Small Scattering Angles

    Full text link
    We investigate the role of a certain class of QCD corrections to electroweak vector boson scattering at small scattering angles and large energies. These are present since, from the perturbative analysis, the vector bosons may dissociate into quark-antiquark pairs giving rise to colour dipoles interacting through gluon exchanges. After the computation of the vector boson impact factors, we present expressions for the lowest order QCD scattering amplitude and for the leading logarithmic BFKL amplitude. Particularly we discuss numerical results for the process γγZZ\gamma\gamma\to ZZ. The QCD corrections to the cross section resulting from the interference with the electroweak ones are estimated and compared with the leading pure electroweak part. Corrections resulting from the leading log BFKL amplitude are of the order of few percent already at the 0.510.5 - 1 TeV energy range.Comment: 21 pages,9 figures, discussion on the helicity-flip impact factors added, typos correcte

    Quantifying effective slip length over micropatterned hydrophobic surfaces

    Get PDF
    We employ micro-particle image velocimetry (μ\mu-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.Comment: 8 page
    corecore