132 research outputs found
Exchange Reactions at Mineral Interfaces
Exchange reactions are a family of chemical reactions that appear when mineral surfaces come into contact with protic solvents. Exchange reactions can also be understood as a unique interaction at mineral interfaces. Particularly significant interactions occurring at mineral surfaces are those with water and CO. The rather complex process occurring when minerals such as calcium silicate hydrate (C–S–H) phases come into contact with aqueous environments is referred to as a metal–proton exchange reaction (MPER). This process leads to the leaching of calcium ions from the near-surface region, the first step in the corrosion of cement-bound materials. Among the various corrosion reactions of C–S–H phases, the MPER appears to be the most important one. A promising approach to bridging certain problems caused by MPER and carbonation is the passivation of C–S–H surfaces. Today, such passivation is reached, for instance, by the functionalization of C–S–H surfaces with water-repelling organic films. Unfortunately, these organic films are weak against temperature and especially weak against abrasion. Exchange reactions at mineral interfaces allow the preparation of intrinsic, hydrophobic surfaces of C–S–H phases just at room temperature via a metal–metal exchange reaction
Interactions between Reduced Graphene Oxide with Monomers of (Calcium) Silicate Hydrates: A First-Principles Study
Graphene is a two-dimensional material, with exceptional mechanical, electrical, and thermal properties. Graphene-based materials are, therefore, excellent candidates for use in nanocomposites. We investigated reduced graphene oxide (rGO), which is produced easily by oxidizing and exfoliating graphite in calcium silicate hydrate (CSHs) composites, for use in cementitious materials. The density functional theory was used to study the binding of moieties, on the rGO surface (e.g., hydroxyl-OH/rGO and epoxide/rGO groups), to CSH units, such as silicate tetrahedra, calcium ions, and OH groups. The simulations indicate complex interactions between OH/rGO and silicate tetrahedra, involving condensation reactions and selective repairing of the rGO lattice to reform pristine graphene. The condensation reactions even occurred in the presence of calcium ions and hydroxyl groups. In contrast, rGO/CSH interactions remained close to the initial structural models of the epoxy rGO surface. The simulations indicate that specific CSHs, containing rGO with different interfacial topologies, can be manufactured using coatings of either epoxide or hydroxyl groups. The results fill a knowledge gap, by establishing a connection between the chemical compositions of CSH units and rGO, and confirm that a wet chemical method can be used to produce pristine graphene by removing hydroxyl defects from rGO
Elimination of Domain Boundaries Accelerates Diffusion in MOFs by an Order of Magnitude: Monolithic Metal‐Organic Framework Thin Films Epitaxially Grown on Si(111) Substrates
Many properties of the emerging class of metal-organic frameworks (MOFs) depend crucially on defect concentrations, as in case of other solids. In order to provide reference systems with nearly perfect structure and low defect density, a procedure to grow MOFs epitaxially on cm-sized Si(111) single crystals is developed. The crystalline metal-organic thin films are in high registry with the substrate\u27s crystal lattice, as demonstrated by synchrotron-based grazing incidence X-ray diffraction (GI-XRD) experiments. The corresponding reduction of MOF defect density is shown to have striking effects on the properties of these porous frameworks. The most pronounced difference concerns mass transport. An increase in the diffusion coefficient of guest molecules by one order of magnitude relative to the same MOF materials with normal defect densities is observed
Increasing the Strain Resistance of Si/SiO Interfaces for Flexible Electronics
Understanding the changes that occur in the micro-mechanical properties of semiconductor materials is of utmost importance for the design of new flexible electronic devices, especially to control the properties of newly designed materials. In this work, we present the design, fabrication, and application of a novel tensile-testing device coupled to FTIR measurements that enables in situ atomic investigations of samples under uniaxial tensile load. The device allows for mechanical studies of rectangular samples with dimensions of 30 mm × 10 mm × 0.5 mm. By recording the alternation in dipole moments, the investigation of fracture mechanisms becomes feasible. Our results show that thermally treated SiO on silicon wafers has a higher strain resistance and breaking force than the SiO native oxide. The FTIR spectra of the samples during the unloading step indicate that for the native oxide sample, the fracture happened following the propagation of cracks from the surface into the silicon wafer. On the contrary, for the thermally treated samples, the crack growth starts from the deepest region of the oxide and propagates along the interface due to the change in the interface properties and redistribution of the applied stress. Finally, density functional theory calculations of model surfaces were conducted in order to unravel the differences in optic and electronic properties of the interfaces with and without applied stress
Comprehensive examination of dehydroxylation of kaolinite, disordered kaolinite, and dickite: Experimental studies and density functional theory
Kaolins and clays are important rawmaterials for production of supplementary cementitious materials and geopolymer precursors through thermal activation by calcination beyond dehydroxylation (DHX). Both types of clay contain different polytypes and disordered structures of kaolinite but little is known about the impact of the layer stacking of dioctahedral 1:1 layer silicates on optimum thermal activation conditions and following reactivity with alkaline solutions. The objective of the present study was to improve understanding of the impact of layer stacking in dioctahedral 1:1 layer silicates on the thermal activation by investigating the atomic structure after dehydroxylation. Heating experiments by simultaneous thermal analysis (STA) followed by characterization of the dehydroxylated materials by nuclear magnetic resonance spectroscopy (NMR) and scanning electron microscopy (SEM) together with first-principles calculations were performed. Density functional theory (DFT) was utilized for correlation of geometry-optimized structures to thermodynamic stability. The resulting volumes of unit cells were compared with data from dilatometry studies. The local structure changes were correlated with experimental results of increasing DHX temperature in the following order: disordered kaolinite, kaolinite, and dickite, whereupon dickite showed two dehydroxylation steps. Intermediate structures were found that were thermodynamically stable and partially dehydroxylated to a degree of DHX of 75% for kaolinite, 25% for disordered kaolinite, and 50% for dickite. These thermodynamically stable, partially dehydroxylated intermediates contained AlV while metakaolinite and metadickite contained only AlIV with a strongly distorted coordination shell. These results indicate strongly the necessity for characterization of the structure of dioctahedral 1:1 layer silicates in kaolins and clays as a key parameter to predict optimized calcination conditions and resulting reactivity
- …