10 research outputs found
Geomorphological Analysis of Mass Balances of Martian Valley Networks in Western Terra Sirenum
In recent years, there has been a great deal of interest in Martian valley networks. Especially when [1] and how and among witch circumstances they have been formed [2] has been discussed up to now. On the whole, at what time Martian valley networks have been generated and that water might has been the forming agent is pretty certain now. A substantial amount of research by a lot of studies is published about that issue. However, a central question that needs to be addressed in this context is, how much water was required to create valley networks on early Mars. The intention of this study focuses on a geologic and geomorphological analysis of valley networks in the Western part of Terra Sirenum presenting calculations of discharge, transportation and erosion rates to improve the insight in a time there must have been other environmental and climate conditions, whose processes are still not sufficiently explored and understood
Runoff, runoff balancing, and derivation of climatic conditions based on regional studies at the impact craters Newton and Bakhuysen
Diese Arbeit beschäftigt sich mit der hydromorphologischen Untersuchung von
Trockenbetten der Kraterinnenränder von Newton und Bakhuysen. Dabei liegt der
Fokus auf dem nordöstlichen Kraterinnenrand Newtons. Durch die Auswertung
verwendeter Bilddaten von HRSC (High Resolution Stereo Camera), CTX (Context
Camera), HiRISE (High Resolution Imaging Science Experiment) und MOC (Mars
Orbiter Camera), digitaler Höhenmodelle von MOLA (Mars Orbiter Laser
Altimeter) und HRSC, berechneter Durchflussraten, Abflussspenden und
potentiellen Abschmelzraten sowie verwendeter fluvialstatistischer Methoden
wird auf die Morphologie und Struktur der fluvialen Systeme qualitativ und
quantitativ Bezug genommen. Die untersuchten Trockenbettsysteme am
Nordostinnenrand Newtons erreichen eine hohe Komplexität ihres
Integrationsgrades der Zuflüsse bei Strahler-Ordnungen bis 5 und Taldichten
zwischen 0,05 km^-1 und 0,32 km^-1 bei Ausbildung dendritischer Abflussmuster
an der Zeitgrenze Noachium/Hesperium bis maximal spätes Hesperium. Ihre
Bifurkationsverhältnisse liegen im Allgemeinen zwischen 2 und 5, während ihre
Tallängenverhältnisse zwischen 1 und 4 schwanken. Da terrestrische
Flusssysteme Werte in derselben Größenordnung zeigen, kann auf ähnliche
erosive Abläufe auch auf dem Mars geschlossen werden. Bei der Untersuchung
ihrer Profillinien ließ sich allerdings ein nur unausgeglichener Verlauf
feststellen. Dem Abfluss war es nicht möglich einen Ausgleich zwischen
Erosion, Transport und Akkumulation zu erreichen, was auf sporadische
Entwässerung deutet. Die Hochwasserspitzen in Newton liegen an den Mündungen
der Vorfluter zwischen 145 m³/s bis 1.200 m³ /s bei Einzugsgebieten bis über
4.000 km²; die mittleren Durchflussraten betragen etwa 10 m³/s bis 230 m³/s.
Das entspricht Abflussspenden pro Tag, die im einstelligen Zentimeterbereich
für jene und im einstelligen Millimeterbereich für diese sich befinden. Eine
Ausprägung eindeutiger Mäander wurde unterdrückt. Vielmehr wechseln sich
Abschnitte mit Konzentrationsabfluss in ausgebildeten Talstrecken und
Flussverwilderung in intramontanen Ebenen ab. Schüttungskörper in Newton
konnten aufgrund unzureichender Auflösung des verwendeten Datenmaterials nicht
zweifelsfrei bestimmt werden. Im Vergleich mit Newton erreichen die
Trockenbetten des Kraters Bakhuysen höchstens Strahler-Ordnungen von 4. Die
Taldichten für die größten Trockenbettsysteme schwanken in Bakhuysen zwischen
0,46 km^-1 und 0,6 km^-1 und liegen damit etwa doppelt so hoch wie diejenigen
des Newton-Kraters. Ihre Bifurkationsverhältnisse bewegen sich zwischen 2 und
4 für mittelgroße Systeme (Strahler 3) und bis 5 für die größten Systeme
(Strahler 4); die Tallängenverhältnisse schwanken dagegen in der Regel
zwischen 1 und 2 und befinden sich somit im unteren Feld der Messungen im
Newton-Krater. Auch hier lassen sich Rückschlüsse auf ähnliche Erosionsabläufe
in einer Aktivitätsphase bis in frühamazonische Zeit schließen, worauf
Altersbestimmungen der Schüttungskörper schließen lassen; auch die
Längsprofile der Täler sind ähnlich unausgeglichen wie die Newtons. Aufgrund
der um eine Dimension kleineren Einzugsgebiete Bakhuysens (< 400 km²) werden
geringere maximale und mittlere Durchflussraten erreicht. Diese liegen für die
größten Einzugsgebiete zwischen 200 m³/s und 290 m³/s für die Maximalwerte und
20 m³/s bis 30 m³/s für die Durchschnittswerte. Ihre Abflussspenden liegen
jedoch in derselben Größenordnung wie bei Newton. Flussverwilderungsabschnitte
fehlen fast ganz und zu Materialzwischenlagerungen kam es kaum. Daher wurde
das Material bis in den Krater hineintransportiert, worauf erhaltene
Schüttungskörper im Nordosten hindeuten. Die Entstehung der Trockenbetten wird
mit einem regionalen thermodynamischen Zirkulationsmodell erklärt, dass durch
die Orographie bedingt wurde. Schneefälle in den Hochlagen und der Verbleib
als Schnee- und Eisrücklage über lange Zeiträume bedingen in wärmeren Epochen
(Interglazialen) ein Abschmelzen derselben aus Nivationsnischen und
Hochebenen. Die Bestimmung potentieller Abschmelzraten ergaben maximale
Abflussspenden im unteren einstelligen Zentimeterbereich pro Tag und besitzen
damit die gleiche Dimension der ermittelten Werte, die sich aus den
Durchflussraten und ihren Einzugsgebieten an den Vorflutermündungen bestimmen
ließen. Durch Eisrindeneffekt und „thermische Erosion“ war es abfließendem
Wasser möglich eine zügige Eintiefung der Flüsse in den Untergrund zu
bewerkstelligen. Die Beobachtungen, Messungen und Berechnungen zeigen, dass
die Trockenbetten und Talsysteme des Mars sich in relativ kurzen Zeitperioden
unter kaltklimatischen Bedingungen entwickeln konnten.This work deals with hydro-morphological investigations of channel and valley
networks of the inner rims of Newton and Bakhuysen Crater on Mars, while
focusing on the northeastern inner rim of Newton Basin. Image data (HRSC, CTX,
MOLA, HiRISE, MOC), digital elevation models (MOLA, HRSC), calculation of
discharge, runoff and potential thawing rates, and fluvial-statistic methods
with qualitative and quantitative reference to the morphology of the fluvial
systems were used for the analyses. The investigated channels and valleys at
the northeastern inner rim of Newton Crater are characterized by a high degree
of complexity and integration of the tributaries. These dendritic systems
reach stream orders of up to 5 and channel/valley densities between 0.05 km^-1
and 0.32 km^-1 at the Noachian-Hesperian-Boundary up to the Late Hesperian.
Their bifurcation ratios vary between 2 to 5 and their stream length ratios
yield 1 to 4. As terrestrial river systems show values in the same order,
erosive processes on Early Mars can assumed to be quite similar. The
unbalanced longitudinal profiles indicate that the channels did not evolve to
the maturity level. The lack of balance of erosion, transport, and
sedimentation, indicates sporadic drainage. The flood peaks in Newton range
between 145 m³/s and 1,200 m³/s at the mouths. The mean discharge rates are
about 10 m³/s to 230 m³/s. This corresponds to runoff rates of some
centimeters per day (peak discharge rates) and some millimeters per day (mean
discharge rates). River meandering was mainly suppressed. Rather, fluvial
sections alternate with single stream channels within well preserved valleys
and segments of anastomosing fluvial structures within inner mountain plains.
A potential alluvial fan or delta could not be determined unambiguously due to
insufficient resolution of the data. In contrast to Newton Crater, stream
orders up to 4 have been determined at the inner rim of Bakhuysen Crater. The
channel/valley densities vary between 0.46 km^-1 and 0.6 km^-1. Hence, they
are roughly twice as high as those of Newton Crater. The bifurcation ratios
vary between 2 and 4 in medium-sized networks (stream order 3) and up to 5 for
the largest systems (stream order 4). Their stream length ratios usually range
between 1 and 2 and, thus, correspond to the lower field of the Newton Crater
measurements. Conclusions can be drawn that erosion processes occurred in a
similar way at other locations on Mars and at other times up to Early
Amazonian. This is proved by age determinations of fluvial deposits.
Longitudinal profiles of the Bakhuysen channels are likewise unbalanced as the
Newton ones. Due to the smaller catchments of Bakhuysen Crater (< 400 km²),
peak and mean discharge rates reach lower values. Largest catchment areas show
peak discharge values of 200 m³/s to 290 m³/s and mean discharge rates of 20
m³/s to 30 m³/s. These runoff rates range in the same dimension as those of
Newton Crater. In general, there is hardly evidence for sedimentation of
material in inner mountain plains. Thus, the material was transported into the
crater which is documented by deposits in the northeast of Bakhuysen. The
formation of the channels and valleys is explained by a local thermodynamic
circulation model generated by the orography. Snowfall in high altitudes and
accumulation of snow and ice in nivation hollows or at elevated areas over
long periods cause thawing and melt water runoff during warmer periods
(interglacial). The determination of potential thawing rates yields maximum
runoff rates of some centimeters per day. They have the same dimension as
those runoff values, which were calculated from the discharge rates, deduced
from catchment area size. A rapid incision of the channel and valley networks
was enabled by the effect of the “eisrinde” and “thermal erosion”. The
observations and calculations show that channel and valley networks on Mars
can evolve intensively in relative short time periods under cold climate
conditions
Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life”
A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary) existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both geomorphological and mineralogical evidence point to the episodic availability of liquid water at the surface of Mars, and physical modeling and small-scale observations suggest that this is also true for more recent periods. Habitable conditions, however, were not uniform over space and time. Several key properties, such as the availability of standing bodies of water, surface runoff and the transportation of nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to be considered in any habitability assessment. The planetary evolution of Mars led to environmental changes, which in turn affected its habitability potential. Similarly, considerable variations in climate due to latitudinal or elevation effects combined with a diverse surface geology caused distinctively different local conditions that influenced the planet׳s habitable potential
Mineralogy and morphology of geologic units at Libya Montes, Mars: Ancient aqueous outcrops, mafic flows, fluvial features and impacts
There is ample evidence of ancient and long-lasting fluvial activity and chemical alteration in the Libya Montes region south of Isidis Basin. The region hosts Noachian to Amazonian aged surface rocks with extensive outcrops of olivine- and pyroxene-bearing material. Libya Montes also features surface outcrops and/or deposits hosting Fe/Mg-smectite, Fe/Mg-smectite mixed with carbonate and/or other Fe/Mg-rich phyllosilicates, and Al-smectite. These aqueous materials likely formed from chemical alteration connected with hydrothermal activity resulting from the formation of the Isidis Basin and/or the pervasive fluvial activity throughout this region. The morphology and stratigraphy of the aqueous and mafic minerals are described using High Resolution Imaging Science Experiment (HiRISE) and High Resolution Stereo Camera (HRSC) derived Digital Terrain Models (DTMs). Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) analyses show variations in the chemistry of the Fe/Mg-smectite from nontronite like exposures with spectral features near 2.29 and 2.4 μm more consistent with Fe3OH groups in the mineral structure, and saponite-like outcrops with spectral features near 2.31 and 2.38 μm characteristic of Mg2OH groups. These Fe/Mg-smectite bearing materials also have bands near 1.9 μm due to H2O and near 2.5 μm that could be due to the smectite, other phyllosilicates, and carbonates. All regions exhibiting carbonate features near 3.4-3.5 μm also have features consistent with the presence of olivine and Fe/Mg-smectite, indicating that the carbonate signatures occur in rocks likely containing a mixture of these minerals. The Al-smectite-bearing rocks have bands near 1.41, 1.91 and 2.19 μm that are more consistent with beidellite than other Al-phyllosilicates, indicating a higher-temperature or diurnally processed origin for this material. Our interpretation of the geologic history of this region is that ancient Noachian basaltic crustal materials experienced extensive aqueous alteration at the time of the Isidis impact, during which
the montes were also formed, followed by emplacement of a rough olivine-rich lava or melt and finally the smooth pyroxene-bearing caprock unit