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a b s t r a c t

A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary)
existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both
geomorphological and mineralogical evidence point to the episodic availability of liquid water at the
surface of Mars, and physical modeling and small-scale observations suggest that this is also true for
more recent periods. Habitable conditions, however, were not uniform over space and time. Several key
properties, such as the availability of standing bodies of water, surface runoff and the transportation of
nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to
be considered in any habitability assessment. The planetary evolution of Mars led to environmental
changes, which in turn affected its habitability potential. Similarly, considerable variations in climate due
to latitudinal or elevation effects combined with a diverse surface geology caused distinctively different
local conditions that influenced the planet's habitable potential.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Habitability is commonly understood as “the potential of an
environment (past or present) to support life of any kind” (Steele
et al., 2005) regardless whether life actually exists or has existed. It
refers instead to environmental conditions that could support life.
Thus it is essential to understand the geological context of such
environmental conditions. Life as known from Earth requires energy
sources, the nutrients (C, H, O, N, P, S) necessary for building
structures and synthesizing catalysts, and access to geological
environments in which biosynthesis and maintenance of biostruc-
tures are possible (e.g., Wald, 1964). A habitable planetary environ-
ment, regardless if past, present, or future, would have to be one of
that features all of the above requirements. No life on other planets
than Earth has been detected so far, and therefore it is not possible to
determine what its overall environmental requirements are. Never-
theless, the one environmental factor that is almost universally
accepted as necessary for life is at least episodic access to liquid
H2O. The availability of the above parameters through time is a

function of the geologic evolution of a planet or moon. Therefore, the
geological investigation of planetary systems, analogous to the Earth
even in a weak sense, is the key to our understanding of the concept
of habitability. This characterization includes geochemical andminer-
alogical knowledge of surface or near-surface rocks and soils, the
nature of the atmosphere and climate, the type, intensity and rates of
geological processes, and finally the history of water or other liquids –
all these factors are intimately related to planetary geology.

Water is an abundant compound in our galaxy, it can be found
in many places, from cold dense molecular clouds to hot stellar
atmospheres (e.g., Cernicharo and Crovisier, 2005). In our solar
system, H2O is abundant on all planetary bodies and it exists in all
phases – solid, gaseous and liquid – within a certain solar distance.
The habitable zone, where liquid water can be present at the
surface, changes with time dependent on the solar energy (e.g.,
Kasting et al., 1993) enabling not only Earth but also Mars to have
liquid water stable on and near the surface for a certain time. Also,
water as a liquid may exist almost independent of the input of
stellar energy in oceans covered by ice shells as it is probably the
case for the icy satellites of Jupiter (Schubert et al., 2004), which
are located well outside the conventional habitable zone of the
sun, driven by tidal dissipation and radiogenic energy. The H2O
molecule is polar, keeping a small charge gradient between oxygen
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and hydrogen. Thus water acts as a solvent of materials with time.
If other volatiles such as atmospheric CO2 are solved inwater, it turns
into a weak acid and enhances its weathering capability. Its dynamic
viscosity makes it, even at low temperatures, in combination
with gravity effectively mobile supporting the transportation of any
material. Its thermal anomaly at low temperatures causes intense
phase changes making H2O a mechanical destructor and allows ice to
swim on water providing shelter for the liquid in thermally harsh
environments. At higher temperatures it increases its mobility and
its capability to carry solved gases. From a geological point of view,
water is the ideal medium to alter, transport and displace surface and
sub-surface material, and to carry the erosional and mobility forces
needed to resurface planetary bodies on a global scale. This addition-
ally requires a cycling process to distribute water all over the planet on
the surface and in the sub-surface. A hydrological cycle via the
atmosphere enables global distribution and recharging of reservoirs
via precipitation, whereas hydrological cycling on the surface enables
weathering. The regional recharging and cycling in the sub-surface via
cracks and pore space enables chemical alteration of materials and
coupling to internal thermal energy via hydrothermal processes.

The aqueous weathering, erosion, and sedimentation history
of a surface is an expression of all processes correlated to the
hydrosphere and their interactions with the atmosphere and the
interior. Thus, the analysis of the surface geology provides insight
into the climatic constraints that existed during the formation
of surface features and this understanding provides the basis to
assess the habitability of environments.

Besides Earth, the most logical place to look for habitability in
the solar system, is Mars: It is the most Earth-like of all the other
planetary bodies in terms of its geological surface record and the
availability of liquid water at or near the surface throughout its
evolution (Lasue et al., 2013). Moreover, solar energy, geothermal
and chemical energy, as well as nutrients, are thought to be
available on Mars. Hence, the analysis of the surface and near-
surface geology is more than just the direct observation and
interpretation of landforms and surface composition. It can also
indirectly validate or invalidate models of atmospheric evolution,
of interior geophysical processes, and of impact probabilities.

A five years study in context with the Helmholtz Alliance
‘Planetary Evolution and Life’ focused on the (temporary) exis-
tence of liquid water, and its likelihood that Mars has been or even
is a habitable planet. Both geomorphological and mineralogical
evidences demonstrate that water was present on ancient Mars,
and this may also be true for very recent periods. Thus, past
habitable conditions on Mars are expected, but may have been
variable over space and time.

2. Concepts of the water-related history of Mars

The history of water on Mars has been constantly revised and
refined during the past decades. Landforms such as widespread
valley networks, fluvial deposits and associated assemblages of
hydrated clay minerals led researchers to propose the hypothesis
that the Martian climate was considerably warm and wet during
Noachian times (e.g., Sagan et al., 1973; Pollack et al., 1987;
Squyres and Kasting, 1994; Jakosky and Phillips, 2001; Craddock
and Howard, 2002; Malin and Edgett, 2003; Irwin et al., 2005b;
Poulet et al., 2005a; Barnhart et al., 2009; Hoke and Hynek, 2009;
Andrews-Hanna and Lewis, 2011). However, alternative studies
give reason to suggest that the aqueous altered clay minerals do
not necessarily imply intense surface weathering under humid
conditions but could have also been formed by subsurface weath-
ering associated to hydrothermal processes or groundwater-
related weathering under cold and dry environmental conditions
(e.g., Ehlmann et al., 2011, 2013). Also the existence of highly

developed valley networks is not necessarily a surety for intense
continuous rainfall. Erosion rates of valley networks imply that
warm and wet conditions might only be met occasionally in
recurring phases (e.g., Solomon et al., 2005; Carr and Head,
2010). Detailed analyses of diagnostic landforms propose an
alternative view of the early climate to be cooler and drier with
only sporadic and transient water-related events (e.g., McEwen
et al., 2007; Christensen et al., 2008).

These observations and considerations led to the assumption
that at the boundary between the Late Noachian and the Early
Hesperian, environmental and climate conditions changed signifi-
cantly and resulted in a transition towards a colder and dryer
climate. The intensity of aqueous activity decreased throughout
the Hesperian, including a transition from long-term and repeated
precipitation-induced fluvial activity towards reduced, short-term,
spatially isolated and groundwater-dominated fluvial erosion (e.g.,
Baker et al., 1992; Carr, 1995, 2012; Tanaka, 1997; Goldspiel and
Squyres, 2000; Grant, 2000; Carr and Head, 2003; Harrison and
Grimm, 2005; Jaumann et al., 2005, 2010; Solomon et al., 2005;
Komatsu et al., 2009; Michalski et al., 2013 and references herein).
At the end of the Hesperian, fluvial erosion had mostly ceased
and volcanic, aeolian and glacial processes are interpreted to be
dominant on Mars. The Early Amazonian was finally characterized
most likely by a cold and dry climate that was similar to the
conditions on recent Mars (e.g., Sagan et al., 1973; Mustard et al.,
2001; Kreslavsky and Head, 2002; Head et al., 2004, 2005, 2006;
Solomon et al., 2005; Fassett and Head, 2008b; Ivanov et al., 2012).
However, Mars' climate and aqueous history, in particular the
timing of the termination of fluvial activity and the transition from
precipitation-induced toward groundwater-dominated erosion, is
still subject to debate.

At current atmospheric conditions, liquid water and exposed
water ice are metastable, or at least short-lived, on the surface of
Mars. Today, the largest inventories of water on Mars are located at
the poles, where huge masses of water ice are captured in the
polar caps (e.g., Titus et al., 2003; Bibring et al., 2004). Near surface
ice or ground ice has been supposed by geomorphological studies
(e.g. Baker, 2001; Mouginot et al., 2012) and finally evidenced in-
situ by the Phoenix lander (e.g. Byrne et al., 2009; Keller et al.,
2009; Markiewicz et al., 2009; Cull et al., 2010; Sizemore et al.,
2012). However, there is ample geomorphological and mineralo-
gical evidence for pervasive interaction of fluvial water with the
Martian surface, resulting in diagnostic landforms, including large-
scale environments such as outflow channels, medium-scale
environments such as valley networks, and local features such as
paleolakes, alluvial fans, deltas and gullies. Distinct flow structures
preserved on the surface indicate flow directions as well as
morphometric parameters, such as channel width, depth, and
slope, which permit estimating discharges and recurrence inter-
vals (e.g., Irwin et al., 2005b, 2008; Jaumann et al., 2005, 2010;
Fassett and Head, 2008a). Large outflow channels, spread over vast
regions on the surface, are characterized by broad, deep channels,
which emerge fully born from localized sources (Carr, 1979, 2012).
They are supposed to be the result of the cataclysmic release
of significant amounts of groundwater, probably triggered by a
progressively thickening cryosphere or volcanic loading of con-
fined aquifers (e.g., Carr, 1979; Baker, 2001; Wilson et al., 2004;
Andrews-Hanna and Phillips, 2007; Musiol et al., 2011) and thus
might indicate the existence of liquid water on the surface for
short flooding periods. The activity of outflow channels was
probably initiated in the Noachian with peak phases during Late
Hesperian and Early Amazonian (e.g., Baker, 2001; Tanaka et al.,
2005; Carr and Head, 2010; Neukum et al., 2010). Some smaller
outflow channels were carved by cataclysmic spillover flooding
as a consequence of paleolake outbursts. Those short-lived water
occurrences can be caused by ground ice melting and rupture of
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the cryosphere, releasing water from the underground (Head et al.,
2003b; Wilson and Head, 2004). Recent studies of outflow
channels and inter-basin chasmata in the eastern Valles Marineris
region provide geomorphologic and chronologic evidence for
significant bedrock erosion initiated by catastrophic spillover by
kilometer-deep bodies of water, which would have existed well
after the global climate optimum of the Noachian (Warner et al.,
2013).

Numerous valley networks dissect the surface of Mars; most of
them are located in the southern highlands. The majority of their ages
cluster around the Noachian-Hesperian boundary (Fassett and Head,
2008b). However, some fluvial networks imply activity phases during
the Hesperian and even in Amazonian times, particularly at the flanks
of volcano edifices (Gulick and Baker, 1990; Mangold et al., 2004;
Fassett and Head, 2008b, 2011; Bouley et al., 2009, 2010). Dendritic
valley networks develop, analogous to terrestrial features, under the
influence of surface runoff as a consequence of precipitation (i.e. rain)
or the melting of snow and/or ice deposits (e.g., Craddock and Howard,
2002; Carr and Head, 2003; Mangold et al., 2004; Irwin et al., 2005b;
Fassett and Head, 2008a; Barnhart et al., 2009; Hoke and Hynek, 2009;
Jaumann et al., 2010; Stepinski and Luo, 2010). Under constant deluge-
style conditions, valley network formation requires about 103–104

years (e.g., Moore et al., 2003; Jaumann et al., 2010) of fluvial activity,
episodic and moderate condition modeling yields timescales of about
105–106 years (Moore et al., 2003; Jaumann et al., 2005; Barnhart et al.,
2009) or even 105–107 (Hoke et al., 2011). Linear valley networks were
probably formed by groundwater sapping (e.g., Sharp and Malin, 1975;
Kochel and Howard, 1985; Malin and Carr, 1999; Carr andMalin, 2000;
Goldspiel and Squyres, 2000; Harrison and Grimm, 2005; Jaumann
et al., 2005, 2010). At their amphitheater-shaped valley heads, ground-
water percolates from the subsurface and causes regressive erosion
(seepage erosion) (Dunne, 1980). Gullies are further surface features
that are supposed to be the result of, at least transient, liquid water.
They were formerly supposed to result from groundwater seepage and
surface runoff (Malin and Edgett, 2000a). Recent analyses suggest that
they result from the melting of near surface ice or snow packs and
develop in dependency of exposition and latitude (Costard et al., 2002;
Christensen, 2003; Reiss et al., 2009; Kneissl et al., 2010; Raack et al.,
2012). Paleolakes were identified in many topographic lows such as
impact craters and valleys, preferably in the southern highlands (e.g.,
Cabrol and Grin, 1999; Di Achille et al., 2007; Fassett and Head, 2008a).
They are often associated with deltas or fan-like deposits that are
known to develop in standing water bodies attesting a, at least
temporary, sustained presence of liquid water (e.g., Ori et al., 2000;
Malin and Edgett, 2003; Fassett and Head, 2005; Fassett et al., 2007;
Pondrelli et al., 2008; Di Achille and Hynek, 2010). It is still under
debate, whether these paleolakes were essentially fed by precipitation
and regionally connected groundwater aquifers under much warmer
and wetter climate than current conditions (Fassett and Head, 2008b;
Wray et al., 2011), and/or by liquid water remobilized from the
cryosphere under cold and arid conditions (Cabrol and Grin, 2002),
possibly later in the Martian history (Dehouck et al., 2010). The largest
potential water reservoir proposed for Mars is a giant ocean that might
have covered the plains of the northern lowlands. This hypothesis is
mainly based on the smoothness of this terrain, in conjunction with
the lack of impact craters, the identification of series of morphological
features interpreted as shorelines, and the orientation of valley
networks and deltas (e.g., Parker et al., 1989, 1993; Baker et al.,
1991; Head et al., 1999; Clifford and Parker, 2001; Webb, 2004;
Ghatan and Zimbelman, 2006; Di Achille and Hynek, 2010; Clifford
et al., 2012; Mouginot et al., 2012; Parker and Calef, 2012). However,
the existence of an ocean is one of the most debated uncertainties of
Mars' aqueous evolution.

Since about a decade, mineralogical and chemical analyses from
orbit and in situ investigations revealed that diverse hydrated
minerals are widely distributed at the Martian surface attesting

widespread aqueous alteration (e.g., Feldman et al., 2002; Squyres
et al., 2004; Poulet et al., 2005b; Bibring et al., 2006; Ehlmann et al.,
2013). Except the hydrated minerals situated in impact craters in the
northern lowlands (Gendrin, 2005; Bibring et al., 2007; Loizeau et al.,
2007; Milliken et al., 2008; Ehlmann et al., 2009; Osterloo et al.,
2010; Bishop et al., 2012). Almost all phyllosilicates, the most
abundant mineral species detected so far, are exposed on Noachian
terrains and are thought to have mainly been formed at a time when
liquid water was available on the surface during the Noachian/Early
Hesperian epoch. Hydrothermal alteration, both volcanic and impact
induced, seems to emerge as one of the most significant weathering
processes leading to the formation of hydrous altered minerals on
Mars (e.g., Carter et al., 2010; Fairén et al., 2010; Marzo et al., 2010;
Ehlmann et al., 2011, 2013; Gross et al., 2012; Bishop et al., 2013).
However, unaltered minerals occurring extensively at the Martian
surface argue that aqueous alteration processes did not act perva-
sively in the ancient crust (Solomon et al., 2005). The largest
quantities of hydrated mineral phases (sulfate minerals and clays)
were identified in thick, layered deposits located at crater floors,
connected plains and canyon systems (Interior Layered Deposits
(ILDs)) (e.g., McCauley et al., 1972; McCauley, 1978; Lucchitta et al.,
1994; Gendrin, 2005; Bishop et al., 2009; Roach et al., 2010; Ansan
et al., 2011; Sowe et al., 2011). Proposed formation processes include
subaerial, subaqueous, or subglacial volcanic processes (Peterson,
1981; Nedell et al., 1987; Chapman and Tanaka, 2001; Hynek et al.,
2002), evaporation in a lake (McKay and Nedell, 1988), groundwater
processes (Murchie et al., 2009), and the formation of spring deposits
(Rossi et al., 2008). To date ongoing research along with the
availability of higher resolution datasets definitely has led to a much
better understanding of these features but likewise raised many
questions such as for the water in any physical condition that seemed
to have been present for a certain time period.

It is presently still being discussed if all this evidence for liquid
water in fact indicates a generally warm and wet climate in Noachian
times or if these warm periods occurred short-lived and infrequent
(Solomon et al., 2005). Triggers for water release mechanisms could
be large impacts resulting in the melting of subsurface ice and its
evaporation to the atmosphere. Such events could and cause periods
of precipitation that can last for decades, recharging groundwater
aquifers (Solomon et al., 2005). Alternatively, volcanic eruptions,
releasing significant amounts of magmatic water to the atmosphere
can also explain a short-time, periodic, and local occurrence of fluvial
activity (Phillips et al., 2001).

The following chapters will discuss a variety of water related
research topics that help to refine the understanding of the climate
history of Mars. The respective locations of example areas under
investigation in the frame work of the Helmholtz Alliance are
summarized in Fig. 1.

3. Water-related environments on Mars

3.1. Fluvial environments

Various fluvial landforms, partially associated with aqueous
altered minerals, have been identified on the Martian surface (e.g.,
Magalhães, 1987; Bibring et al., 2006; Loizeau et al., 2007; Milliken
et al., 2008; Ehlmann et al., 2009, 2013; Osterloo et al., 2010;
Erkeling et al., 2012). The most prevalent fluvial landforms
on Mars are valley networks, both dendritic and longitudinally
patterned, attesting a recurring and widespread aqueous history.
Studying the evolution of these fluvial systems is key to the
interpretation of the timing and intensity of former fluvial water
activity on Mars. Observations of fluvial landforms in the Libya
Montes and in Newton Crater are of particular interest, because
they allow constraining the water-related geologic record of

R. Jaumann et al. / Planetary and Space Science 98 (2014) 128–145130



similar landforms in distinct geologic settings: a typical highland
region located at an ancient rim of a giant impact basin at the
equator (Libya Montes), and a large impact crater at the mid-
latitudes representing an example of spatially localized valley
formation with significant influence by the local topography
(Newton Crater).

The Noachian highlands of the Libya Montes, located along the
southern margin of Isidis Planitia, are an example for extensive, long-
term and repeated fluvial activity on early Mars that is inconsistent
with the climate conditions on recent Mars. They reveal a large
variety of hydrous landforms including abundant and dense valley
networks, broad longitudinal valleys, paleolakes, deltas, alluvial fans
and possible shorelines (Crumpler and Tanaka, 2003; Jaumann et al.,
2005, 2010; Erkeling et al., 2010, 2012). The majority of the Libya
Montes landforms shows Late Noachian to Early Hesperian model
ages and were formed earlier than �3.5 (7�0.1) Ga (Erkeling et al.,
2010, 2012; Jaumann et al., 2010; Michael and Neukum, 2010), which
is consistent with studies by Crumpler and Tanaka (2003). Particu-
larly, the valley networks originating from mountain tops and crests
are mostly dendritic and represent an initial period of valley erosion
on early Mars, when fluvial activity was possibly controlled by
precipitation-induced surface runoff. The morphologies of the den-
dritic valley networks, such as their repeated branching towards the
upstream sections and their origin close to the summits of the Libya
Montes mountains and on steep sloped crater walls support a
formation by precipitation-driven surface water flow (e.g., Carr and
Chuang, 1997; Mangold et al., 2004; Erkeling et al., 2010; Hynek et al.,
2010; Jaumann et al., 2010). Dendritic patterns of valley networks can
also point to downward percolation from superposed material such
as glacial ice or snow (Lucchitta and Anderson, 1979; Lucchitta, 1982,
2001; Carr and Head, 2003; Gaidos and Marion, 2003). However, a
formation due to glacial erosion is unlikely, because glacial land-
forms, as for example debris covered glaciers shown by Morgan and
Head (2009), or morphologies that support subglacial flow such as
eskers (e.g., Kargel and Strom, 1992), are absent within the Libya
Montes. Morphometric indices, such as the valley density and the
stream order reflect the original mode of hydrologic activity (Horton,
1945; Strahler, 1958; Gardiner and Gregory, 1982; Hou et al., 1997;
Schumm, 1997) and revealed that the valley systems are mature
and integrated. The ancient valley networks show maximum valley
densities of 0.57 km�1 and the stream order ranges from 4 to 7 for
drainage basins investigated throughout the Libya Montes (Erkeling
et al., 2010). Age determination of fluvial geological units based on
crater counts revealed that the formation of the eastern Libya Montes

dendritic valleys occurred between �4.1 and �3.8 (7�0.1) Ga
(Jaumann et al., 2010; Erkeling et al., 2010). Dendritic valley networks
are absent in Hesperian-aged regions of Libya Montes (Erkeling et al.,
2010) and in large areas of adjacent regions such as Amenthes
Planum (Leverington, 2006; Erkeling et al., 2011) and Isidis Planitia
(Erkeling et al., 2012; Ivanov et al., 2012). This suggests that valley
formation due to rain or snowfall occurred mostly in the earliest
times of the Martian history. Therefore, the termination of dendritic
valley formation around �3.8 (7�0.1) Ga is interpreted to be the
result of a change of the erosive environment and climate conditions
at the boundary from the Noachian to the Hesperian epoch at least in
these regions.

The dissected landforms of Newton Crater, a 300 km sized impact
basin located in Terra Sirenum on Mars (401S; 1571W), attest an
intense fluvial activity (Petau et al., 2012a, 2012b). Particularly the
northern rim comprises both dendritic valley patterns and sapping
induced structures. Dating of surfaces (Michael and Neukum, 2010)
incised by the dendritic channels in this area yield an age of �3.56
(þ0.04/�0.05) Ga, whereas crater fill units at the basin floor show
ages of �3.09 (þ0.11/�0.18) Ga (Petau et al., 2012a). Dendritic
patterns, which characterize the earliest fluvial phases, indicate
surface runoff probably induced by precipitation of rain or snow in
the Libya Montes region (Jaumann et al., 2005, 2010; Erkeling et al.,
2010). Linear channels on late Hesperian surfaces imply that fluvial
activity changed subsequently to groundwater sapping processes.
The age of �3.09 (þ0.11/�0.18) Ga marks the termination of
dendritic activity in that region as this unit covers the mouths of
the dendritic channels. Hence, the fluvial activity at Newton Basin
covers a time span of at least a few 100 Ma. Newton's dendritic valley
networks are slightly different in the temporal development of their
fluvial activity. They have a maximum age of �3.56 (þ0.04/�0.05)
Ga, which is the minimum age in the Libya Montes region; in other
words: the dendritic activity in Newton started later in Martian
history. Newton reveals well preserved topographic watersheds
(Fig. 2) (Petau et al., 2012a, 2012b). They enclose three main
catchment areas that can be divided into a western, central, and an
eastern branch (Fig. 2), with stream orders of 4 and 5 (some
dimensions lower than their counterpart in Libya Montes) and sizes
between 1800 and 4200 km2. The valleys of the western and central
catchments at Newton's crater rim started as dendritic patterns and
enter the crater floor in one longitudinal channel, respectively. The
eastern one drained into an enclosed basin and fed a standing body
of water. Due to the good state of preservation of remnant channels
Petau et al. (2012a) derived discharge rates Q (m³/s) calculated by

Fig. 1. Type localities of aqueous environments that have been studied in the frame work of the Helmholz Alliance. (Background: MOLA topography map.)
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using the empirical equation Q¼1.4W1.22 (Irwin et al., 2005a), where
W is the average width (m) of a channel. Based on this estimation the
discharge of each fluvial system is equal to 1000 and 1250 m³/s.
Due to the complex drainage system of more than 1500 km length
in relation to the small regional extent of the three catchments
(�8500 km2), relatively high amounts of surface runoff (up to some
centimeters per day) were possibly responsible for the formation of
the dendritic valleys. For comparison, Irwin et al. (2005a) calculated
runoff production rates for different Martian valley networks yielding
values between 0.1 cm/d and 5.5 cm/d. Runoff rates in Newton Crater
range around the uppermost dimension of rates calculated by Irwin
et al. (2005a) and around the lowermost dimensions given by Hoke
et al. (2011). In fact, the highest drainage densities are located at the
highest elevations and steepest slopes on the entire northern inner
rim with values between 0.15 and 0.3 km�1, overall consistent with
that of Libya Montes derived by Erkeling et al. (2010). Nevertheless in
comparison with the maximum drainage density in Libya Montes
(0.57 km�1), Newton's maximum density is half the size of the
Libya's one, which is consistent with the higher stream orders of the
more extended Libya Montes region. Previous investigations led to
drainage densities between 0.53 km�1 and 1.5 km�1 (Mangold et al.,
2004; Ansan and Mangold, 2006).

Many authors suggest that Mars had a thicker and warmer
atmosphere in its early days, which allowed a higher amount of
water vapor than today (e.g., Craddock and Howard, 2002). Both
Newton Basin and Libya Montes support this assumption. But in
contrast to the extended Libya Montes region, Newton reveals an
orographic effect. Due to its topography, local climate conditions
and an atmospheric water cycle could have generated temporal
and local recharging based on uplift of steam-rich air masses,
followed by rainfall and surface runoff (e.g., Ansan and Mangold,
2006; Grant et al., 2011; Kite et al., 2011; Scanlon et al., 2013).
Alternatively, a hydrological cycle fed by snow would comprise

snow packages, accumulated at the crater rim over long time-
scales. In this case melt water could have drained into Newton
Crater and formative a standing body of water feeding the atmo-
sphere with vapor (Carr, 2001). Significant melting of snow
packets requires a climate featuring long-term mean temperatures
above the freezing point, as occurring during periods of high
obliquity (e.g., Laskar et al., 2002, 2004). The geologic setting
of valley networks in Newton Crater suggests precipitation
with special consideration of orographic effects, surface runoff
and valley formation, which are the results of appropriate local
environmental and climate conditions.

In summary, the investigations of both valley networks close to
the equator (Libya Montes) and in mid-latitudes (Newton Crater)
point to commonalities. Both regions show the ancient develop-
ment of dendritic and longitudinal valleys, generally similar
drainage densities and stream orders, but with differences in their
maximum values (higher ones in Libya Montes), which is an
indication for more intensive erosion processes in several places,
that is consistent with generally higher erosion events in the
Noachian. The fluvial activity in the Libya Montes shows a change
in erosion style from precipitation controlled dendritic dissection
to more subsurface water release controlled sapping forming
longitudinal valleys at about 3.8 Ga and ceased at �3.5 Ga, while
there was still some spatially isolated activity until the mid-
Amazonian (Jaumann et al., 2010). The fluvial erosion in Newton
Crater shows the same change from precipitation controlled
dendritic dissection to sapping-like groundwater release. How-
ever, this happened later than in the Libya Montes. It is most likely
that orographic effects present in Newton Crater contributed to
the origin of spatially limited patterns of dendritic valley networks
and are not attributed to global environmental conditions at the
Noachian–Hesperian boundary. However, Newton Crater shows
that fluvial processes operate on a local scale in the same way as

Fig. 2. Topographic map of the north-eastern rim of Newton Crater and its main fluvial dendritic valley network regime within a western, central, and eastern catchment.
The red lines represent main regional water sheds, the orange lines stand for local watersheds. The main direction of the drainage system proceeds from the north-eastern
rim of Newton Crater to south-west into the basin floor. The two blue colored areas at the eastern catchment represent proposed former standing bodies of water with a
minimumwater volume (A) and a maximumwater volume (B). Mosaic of HRSC and CTX data with MOLA topography. Image center is at 38.371S, 203.851E. The main interior
channels indicate discharges of 1000–1250 m³/s. In connection with the catchment areas this results in runoff production rates of 2.9–5.6 cm/d.
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they do on a more regional scale (Libya) with comparable drainage
densities, stream orders and discharges at different times. One
possible interpretation of this observation is that the change in
erosion style – precipitation induced dendritic dissection to sap-
ping caused headward erosion – is not only due to a global change
of climate conditions, but also occurs when the local conditions
change. Presumably, the amount of surface/subsurface water
determines the fluvial erosion style. If the availability of surface
water decreases by seepage and subsurface drainage, sapping starts
to dominate until the amount of available groundwater drops below
a certain threshold. While this can happen at different times and
places it seems to be a fundamental geological process on Mars.
Nevertheless, the extent of this process is time-dependent. The
change in fluvial erosion style is global at the Noachian–Hesperian
boundary and shrinks afterwards to smaller regions with specific
orographic climate conditions.

3.2. Lacustrine environments

While geomorphological and mineralogical evidence suggests
that liquid water was once present at and near the surface of Mars
(e.g., Baker, 2001; Bibring et al., 2006), among all of the geomor-
phological water-related features, paleolakes are privileged targets
for the search of traces of life on Mars because they indicate a
sustained presence of liquid water. Knowledge on their temporal
and spatial occurrence provides significant constraints on the
surface water availability through time. Most paleolakes are
distributed in the Noachian highlands of Mars and are thought
to have mainly formed during the Noachian/Early Hesperian
Epoch (Cabrol and Grin, 1999, 2001; Fassett and Head, 2008a;
Grant et al., 2008; Ansan et al., 2011). Widespread and numerous
exposures of phyllosilicate-bearing material and outcrops in the
Martian southern highlands (e.g., Poulet et al., 2005a; Ehlmann
et al., 2013) show globally distributed water in the Noachian
period. The analysis of fluvial geomorphology holds the view that
Noachian was the period when water was most abundant on the
surface; however the duration and intensity of fluvial processes in
the Noachian period is still unknown.

To constrain the chronology of hydrological processes occurring
during the Late Noachian/Early Hesperian, Adeli et al. (2012, 2013)
studied paleolakes in Terra Sirenum at about 351S and 1801E
(Fig. 3). This region in the southern cratered highlands is believed
to have once contained a �1.1 M km2 lake, so called Eridania Lake
that eventually drained through the large Ma'adim Vallis outflow
channel (Irwin, 2004). As Eridania Lake dried out, it divided into
a series of isolated and smaller lakes, including: Atlantis Chaos,
Gorgonum Chaos, Ariadnes Colles and two unnamed basins. The
floors of these basins are partly dominated by hills (knobs), which
are composed of light-toned materials interpreted as Fe/Mg-rich
phyllosilicates (Howard, 2004; Glotch et al., 2010; Annex and
Howard, 2011; Davila et al., 2011; Ruesch et al., 2012; Wendt
et al., 2012). Adeli et al. (2012, 2013) mainly focused on the 240 km
diameter Atlantis Basin (centered at 34.281S and 182.691E) that is
the deepest basin among the others, and two unnamed basins
located south and southwest of Atlantis Basin. The light-toned
materials enriched in Fe/Mg-phyllosilicates (saponite/vermiculite)
constituting the knobs, built the oldest unit that was deposited in
these basins, likely in a lake (Adeli et al., 2012). The size distribu-
tion of knobs varies from larger knobs near the center of the basin
to smaller ones at the basin rim, which is suitable with knob
material once being continuous and thicker near the center, and
being deposited in a standing body of water. Lack of shoreline
evidence for the large Eridania Lake and, on the other hand, the
clear evidence of the presence of smaller lakes in isolated basins,
may reveal that Eridania Lake did not last over a long geological
time. Instead, Eridania Lake may have been converted relatively

quickly to smaller lakes, which may have existed for a longer time
allowing the alteration of the sediments into clays. The knobby
shape of these materials might be the result of aqueous and/or
aeolian erosions after desiccation of the possible lake. The light-
toned materials also locally outcropped in the shallower periph-
eral parts of these basins, along the basin rims. They are often
observed close to fluvial channels. Mineralogical studies reveal a
sequence of Al-phyllosilicates (kaolinite) lying on top of Fe/Mg-
rich phyllosilicates in these outcrops, which have likely been
exposed by Late Hesperian or Early Amazonian aqueous activities.
After the lake desiccation, the percolation of water (from pre-
cipitation or melted snow/ice) may have produced a widespread
top-down weathering of the ground, producing such a sequence of
phyllosilicate-rich materials. Such top-down weathering have
been proposed to explain the formation of phyllosilicates in other
regions of Mars (e.g., Gaudin et al., 2011; Le Deit et al., 2012; Carter
et al., 2013). The current shape and the presence of two different
phyllosilicate-rich formations in these basins suggest that multiple
alteration, erosion and aqueous episodes occurred in Terra
Sirenum.

Significant evidence for standing bodies of water on the surface
of Mars was also found at the boundary between the Libya Montes
and southern Isidis Planitia (Erkeling et al., 2012). Support for a
lacustrine origin and standing bodies of water is likewise provided
by multiple occurrences of closed- and open-basin paleolakes and
delta deposits in the Libya Montes highlands (Cabrol and Grin,
1999, 2001; Crumpler and Tanaka, 2003; Erkeling et al., 2012).
Observations of these deposits revealed layers rich in phyllosili-
cates that indicate transportation and alteration of minerals
by liquid water, for example Al-phyllosilicates (montmorillonite)
identified in the bottomset beds of a delta and Fe/Mg-phyllosili-
cates (smectites) identified in multiple lobes of an alluvial fan
(Erkeling et al., 2012). In general, the phyllosilicates identified in
the Libya Montes and elsewhere on Mars are of particular interest
because they are candidate places to find possible organic
materials.

In addition, the landforms associated with the Arabia contact
have been interpreted as a putative global paleoshoreline that is
possibly the result of a paleoocean (e.g., Parker et al., 1989, 1993).
However, the majority of possible Martian coastlines, such as cliffs,
benches and ridges, have been interpreted as wrinkle ridges,
aeolian landforms, remnants of impact craters, scarps and lobate
flow fronts volcanic in origin (e.g., Webb, 2004; Ghatan and
Zimbelman, 2006). However, this is unlikely for the cliffs, terraces
and platforms identified between the Libya Montes and southern
Isidis Planitia. In particular, the cliff morphologies of the Arabia
contact in southern Isidis are similar to those ridges and cliffs that
have been interpreted by Ghatan and Zimbelman (2006) (see
Figures 15e and 17b in Ghatan and Zimbelman (2006)) as reason-
able candidates for coastal landforms. Based on the absence of
volcanic sources a formation by lava deposition can be excluded
(Erkeling et al., 2012). Detailed investigations of the landscapes in
the vicinity of the Arabia contact in southern Isidis Planitia
indicate that also tectonic, aeolian, and glacial processes cannot
explain the geologic setting consistently and unlikely resulted
in the formation of the cliffs (Erkeling et al., 2012). The cliffs and
benches of the Arabia contact in Isidis Planitia are also comparable
to analogous terrestrial oceanic coastal landforms (e.g., Bradley
and Griggs, 1976; Adams and Wesnousky, 1988). Therefore, the
Arabia contact in southern Isidis Planitia may be the result of long-
term wave cut action and sea level variations of a sea-size standing
body of water that possibly filled the Isidis Basin in the Hesperian
(Erkeling et al., 2012). The Deuteronilus contact, the second global
paleoshoreline, is also located at the boundary between the Libya
Montes and the Isidis Basin. The morphologies of the contact,
including its onlap geometry and the lack of cliffs, are significantly
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different to the landforms identified at the Arabia shoreline and
indicate the absence of long-term standing water and wave-cut
erosion. The morphologic setting of the Deuteronilus contact
supports more likely a late stage and short-lived Isidis sea
(Erkeling et al., 2012), similar to the proposed primordial ocean
that filled the northern lowlands of Mars (e.g., Parker et al., 1989,
1993; Kreslavsky and Head, 2002; Carr and Head, 2003).

Knowledge on the timing of fluvial and lacustrine processes is
critical for the understanding of the aqueous surface evolution of
Mars. Although numerous deltas and fan-like deposits on Mars
point to the former existence of lakes, only few of them are
obviously linked to dendritic valley networks (Pondrelli et al.,
2005, 2008). Hence, it is not clear whether the deltas are records
of the same epoch of fluvial activity as the valley networks.
To constrain the chronology of delta formation, and indirectly
lacustrine processes, Hauber et al. (2009) selected a population of
deltas and fan-like deposits in Xanthe Terra. These deltas are not
linked to dendritic valley networks, but to deeply incised valleys
with few tributaries, uniform widths, and amphitheater-shaped
headwalls (Hauber et al., 2009) (Fig. 4). The ages of the deltas as
determined by crater counting techniques are consistently post-
Noachian in time and range from the Early Hesperian to the Late

Amazonian. Similar ages were obtained for a set of morphologi-
cally analogous deltas in the eastern hemisphere, which were
studied for comparison. It appears that these results concerning
deltas are not restricted to a specific region, but are globally
representative (Hauber et al., 2013). Valleys with associated deltas
were formed by short-lived aqueous processes, as indicated by
morphologic observations, a lack of associated alteration minerals,
and fluvial transport modeling (Kleinhans et al., 2010). Water was
mobilized from the cryosphere and was not provided directly by
widespread precipitation or by a regionally connected ground-
water aquifer. Therefore, the formation of valleys and related
deltas did not require sustained periods of global climatic condi-
tions favoring widespread precipitation.

Lacustrine features on Mars cover different classes including
desiccation lakes, shorelines and deltas. They are widespread over
time and localities but seem, similar to the fluvial features, not
require sustained long lasting wet periods to form.

3.3. Alteration products

On the other hand, the occurrence of rocks bearing alteration
minerals (e.g., clays, sulfates, ferric oxides, carbonates) shows that

Fig. 3. (a) MOLA digital elevation model at 128 pixel/degree overlapping a MOLA hillshade map (23 pixels/degree) representing the eastern part of the Eridania paleolake.
The black box represents the position of the figure b. (b) HRSC image (orbit 2630) representing Atlantis Chaos Basin and the surrounding area. (c) CTX image
(P07_003702_1440_XN_36S176W) showing the knobs which covers partly the floor of this basin, and are composed of light-toned material.

R. Jaumann et al. / Planetary and Space Science 98 (2014) 128–145134



aqueous processes have been involved in their formation. These
aqueous processes must have happened on a sufficiently long-term
basis to allow the aqueous minerals precipitation. Thus, altered rocks
are sites of special interest to study the former habitability of Mars.
To constrain the environmental and climatic conditions in which
these alteration products formed, the morphology, the distribution,
the stratigraphy, and the composition of alteration products in
different settings in Valles Marineris, its surrounding plateaus, and
in Gale crater have been studied (Le Deit et al., 2010, 2012; Sowe
et al., 2012; Le Deit et al., 2013).

On the plateaus surrounding Valles Marineris Le Deit et al.
(2012) mapped an extensive Al- and Fe/Mg-phyllosilicate-rich
formation covering at least 197,000 km2, for which they intro-
duced the name “Plateau Phyllosilicates” (see Fig. 5a). Tens of
meters in thickness, this light-toned formation crops out at various
elevations on top of Noachian terrains, as flat exposures on

plateaus and along scarps such as valley walls, chasma walls, pit
walls and impact crater rims. The Fe/Mg-phyllosilicate-rich lower
member of the formation is composed of Fe/Mg-smectites (non-
tronite, saponite) and vermiculite. The Al-phyllosilicate-rich upper
member of the formation contains Al-smectites (montmorillonite,
beidellite) and locally kaolinite and/or halloysite. From these
observations and by analogy with terrestrial processes, Le Deit
et al. (2012) suggested that the Plateau Phyllosilicates were mainly
formed by pedogenesis related to the weathering of the Noachian
bedrock by percolation of episodic meteoric water or melted snow
through time. Mineral assemblages and stratigraphic relationships
suggest that the Plateau Phyllosilicates developed in a neutral to
alkaline environment during the Noachian Epoch (Le Deit et al.,
2010, 2012; Sowe et al., 2012; Le Deit et al., 2013). Since iron
smectites (e.g., nontronite) are only preserved in environments
that are not too hot or too humid in volcanic soils on Earth
(Chamley, 1989), the presence of nontronite in the Fe/Mg-member
of the Plateau Phyllosilicates suggests that this member formed
under a subarid climate, or even a possibly dryer climate. Kaolinite
and/or halloysite may have formed in localized areas of more
intense drainage at the surface under slightly acidic environments
during the Noachian and Hesperian Epochs. Hence, this study
suggested that the alteration of the Noachian crust was wide-
spread in this region during the Noachian Epoch, and was still
active during the Hesperian Epoch even with a smaller relative
importance. This kind of Plateau Phyllosilicates has also been
described in other regions of Mars including Mawrth Vallis
(Loizeau et al., 2007; McKeown et al., 2009; Noe Dobrea and
Swayze, 2010), Nili Fossae (Ehlmann et al., 2009; Gaudin et al.,
2011), western Arabia Terra (Noe Dobrea and Swayze, 2010),
northeast Noachis Terra (Wray et al., 2009), and in other sites
scattered over the southern ancient highlands (Carter et al., 2013).
Ehlmann et al. (2011) proposed that these kind of Plateau
Phyllosilicates may have been formed by deep hydrothermal
circulation instead of pedogenesis. However, the presence of Al-
phyllosilicates in many regions would be difficult to explain with

Fig. 4. Example of small delta in Xanthe Terra and around Chryse Planitia. The
deltaic deposit was fed from a short and deep valley without tributaries (north of
Aram Chaos at 14.091N, 335.701E; detail of CTX image B17_016460_1943).

Fig. 5. (a) “Plateau Phyllosilicates” exposed along the upper parts of a pit wall south of Coprates Chasma. Portion of HiRISE IRB color image PSP_009143_1645 (image center:
�15.071N, 58.231W). (b) CTX image P01_001560_1756 XN with green arrow indicating the location of kieserite spectra (ratio 1 in label e) exposed on a light-toned scarp.
(c) Location of PHS spectrum (red arrow, ratio 3 in label e) corresponding to low albedo, layered material cropping out below a dark friable cap rock (CTX P04_002681_1761
XN). (d) Portion of the previous CTX image showing light-toned phyllosilicate outcrop on chaotic terrain mounds. (e–f) Ratios and matching lab spectra of the CRISM orbits
FRT00008943 and HRL6181.
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this formation process (Carter et al., 2013). This widespread
distribution of Plateau Phyllosilicates gives evidence that altera-
tion of the Noachian basement occurred on a wide scale in the
Martian history.

To constrain the possible evolution of the environmental
conditions in the region of Valles Marineris, Le Deit et al. (2010)
studied sedimentary deposits, named “Layered Deposits” (LDs)
herein, consisting of a 100 m thick series of alternating light and
dark beds that cover the plateaus around Valles Marineris. They
are stratigraphically above the Plateau Phyllosilicates and were
deposited during the Hesperian and possibly later depending on
the region. Because of their wide spatial coverage (42,300 km2 at
least) and their high elevated plateau setting, Le Deit et al. (2010)
suggested that LDs correspond to air fall dust and/or volcanic ash.
The association of all LDs with valley systems and the occurrence
of LDs within inverted channels indicate that at least portions of
LDs are fluvial in origin (e.g., Weitz et al., 2008, 2010). Analyses of
CRISM data showed that the LDs contain amorphous silica such
as opal, and hydroxylated ferric sulfates in various proportions
depending on the region (Milliken et al., 2008; Bishop et al., 2009;
Le Deit et al., 2010). These mineral phases are consistent with
aqueous alteration by sulphur-rich acidic solutions under oxidiz-
ing conditions of unaltered basaltic substrate (e.g., Tosca et al.,
2004) or phyllosilicate-rich substrate, which may correspond to
the Plateau Phyllosilicates. Experimental studies (Altheide et al.,
2010) showed indeed that nontronite is fully degraded under acid
leaching at pHr4, resulting in a mixture of hydrated amorphous
silica and Al- and Fe-sulfates.

Kilometer-thick sequences of layered deposits named Interior
Layered Deposits (ILDs) fill the Valles Marineris canyons and the
eastern chaotic terrains (Fig. 6). Hydrated minerals were mapped
in Aureum Chaos, a 295 km wide circular depression that is
dominated by chaotic terrain and ILDs (Sowe et al., 2012). The
latter are classified as Hesperian in age (Scott and Tanaka, 1986)
and reveal morphological similarities to other layered deposits and
the presence of polyhydrated sulfates and iron oxides (Glotch and
Christensen, 2005; Glotch and Rogers, 2007; Noe Dobrea et al.,
2008). Three stratigraphic units within local ILDs have been
identified (Sowe et al., 2012). The lowest unit shows massive and
layered, high-albedo monohydrated sulfate (MHS, best matching
kieserite; 20–650 m thick) with intercalated hydroxylated ferric
sulfates (HFS, best matching jarosite) and ferric oxides; overlying
polyhydrated sulfate (PHS) is commonly layered (20–40 m thick),
smooth to heavily fractured, of lower albedo and partially contains
ferric oxides; spectrally neutral, distinctly layered, and bumpy cap
rock (40–300 m thick) forms the top. The deposits show

similarities in composition and morphology to those in chaos
regions and also in chasmata of Valles Marineris, e.g. Aram Chaos
(PHS, MHS; texture of ILD and cap rock), Juventae Chasma (HFS) and
Ophir Chasma (kieserite, PHS) (Bishop et al., 2009; Lichtenberg et al.,
2010; Wendt et al., 2011). The phyllosilicate nontronite was found in
the chaotic terrain as light toned fractured exposure and within dark,
smooth, and indurated mantling but spatially close to sulfate-bearing
ILDs. Sowe et al. (2012) could not define facies or relative timing of
the layered deposit and sulfate formation and considered two
models: (1) Formation of one sulfate type (either kieserite or PHS)
e.g. by evaporation in a lake (or even freeze-drying? (Möhlmann and
Thomsen, 2011)) and its alteration later on. Ice-weathering has been
assumed for these kind of deposits by (Niles and Michalski, 2009).
The occurrence of PHS along mantling edges and on flat surfaces of
kieserite without textural differences makes PHS a potential altera-
tion product of kieserite, e.g. due to surface exposure. (2) Post-ILD
sulfate formation by groundwater intruding into previously formed,
sulfate-free ILDs would be another formation hypothesis (Andrews-
Hanna et al., 2007) that was suggested for other localities with
sulfate-bearing ILDs (Wendt et al., 2011). Surface age of the ILD is
constrained by stratigraphic relationships to be within chaotic terrain
(Late Hesperian) and mantling deposits (Mid to Late Amazonian).
Nontronite observed in chaotic terrains could have been formed
locally and is assumed either after the Noachian or instead during the
Noachian following the Phyllosian era proposed by Bibring et al.
(2006). Apart from that, a close spatial association of sulfates and
phyllosilicates could be considered as temporally close as well
(Baldridge et al., 2009). If ascending groundwater produced the
observed mineralogy, nontronite would represent the low facies
and sulfates the shallow facies. However, the preservation of non-
tronite, HFS, and MHS indicates a relatively dry environment with
intermittent aqueous activity since their emplacement within Aureum
Chaos deposits, which is in agreement with the studies lead on the
plateaus surrounding Valles Marineris (Le Deit et al., 2012).

The sedimentary infill of Gale Crater has been studied using
recent orbital data (Le Deit et al., 2013). The occurrence of
channels carved along the crater rim and along its 5 km thick
central mound of layered deposits, so called Aeolis Mons, (Malin
and Edgett, 2000b), the detection of sulfates and clays from orbit
(Milliken et al., 2010), and the presence of possible terraces (Cabrol
et al., 1999) are strong hints for repeated and possibly diverse
aqueous activity in Gale (e.g., Thomson et al., 2011). The recent
Mars Science Laboratory (MSL) (Grotzinger et al., 2012) in situ
investigations of conglomerates in a hypothetic alluvial fan and of
light-toned veins enriched in hydrated calcium sulfate (Mangold
et al., 2013; Williams et al., 2013) on the crater floor confirm that
liquid water once occurred in Gale Crater. From the geological
mapping of Gale and geometric measurements of the layered
sediment, LeDeit et al. (2013) interpret the sediment of Aeolis
Mons to be primarily airfall material such as dust, volcanic ash,
and fine-grained impact products deposited by settling from the
atmosphere and cemented in the crater center (Fig. 7). Wind-
blown sands are also likely contained in the sediment. The upper
unit of the mound rather primarily corresponds to aeolian sands.
The occurrence of stepped fan-shaped deposits and the morphol-
ogy of the crater floor material deposited around Aeolis Mons and
on the crater wall suggest that they correspond to alluvial and
colluvial deposits formed during the Hesperian. A suite of several
features including patterned ground and possible rock glaciers
are suggestive of periglacial processes with a permafrost environ-
ment after the first hundreds of thousands of years following
its formation, dated to �3.61 (þ0.04/�0.06) Ga (LeDeit et al.,
2013). Possible coastal landforms including a fan delta, terraces,
and a shoreline suggest the presence of a shallow paleolake after
the formation of the lowermost layers of Aeolis Mons. Episodic
melting of snow in the crater may have caused the formation of

Fig. 6. Interior layered deposits (ILD) located on the northern wall of Coprates
Chasma. The deposits (arrows) contain sulfate-bearing material (Fueten et al., 2010)
and are typical of other ILD within the trough system of Valles Marineris.
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sulfates and clays in Aeolis Mons. Overall, those studies of alteration
products suggest that the Martian climate was relatively dry with
intermittent aqueous activity throughout the planet history, allowing
the alteration of the surface at a large scale which is consistent with
the results of fluvial and lacustrine observations.

3.4. Hydrothermal environments

The surface of Mars shows ample evidence of volcanic deposits
and the existence of an extensive cryosphere/groundwater system
(e.g., Tanaka et al., 1992; Clifford, 1993; Greeley et al., 2005).
Hence, it is reasonable to assume that, among others, interactions
between an internal heat source and the cryosphere/groundwater
enabled the formation of a hydrothermal system on Mars. Diag-
nostic for such hydrothermal activity on Earth, are for example
hydrated silicate minerals that are typically formed by an
extended exposure of silicates to abundant water (Tornabene
et al., 2013). On Mars, the identification of hydrothermal minerals
mostly in the ancient Noachian period has frequently been used as
evidence for a once warmer and wetter Mars, despite that fact that
climate models have difficulties in reproducing stable water
during this epoch (e.g., Kasting, 1991; Colaprete and Toon, 2003).
Provided Mars was cooler and drier on its surface with only
sporadic and transient water-related events (e.g., McEwen et al.,
2007; Christensen et al., 2008), one has to consider a formation of
hydrated minerals in special environments, including the subsur-
face and impact craters (e.g., Ehlmann et al., 2011; Osinski et al.,
2013; Tornabene et al., 2013). Ehlmann et al. (2011) argued that
most clay minerals, specifically the Fe/Mg clay minerals were
formed in closed systems at temperatures varying from ambient
to o400 1C and later exhumed/excavated by impact craters. In
such closed systems, water is isolated from the atmosphere and
approaches chemical equilibrium with precursor rocks. This isola-
tion also has influence on the temperatures, pressures, redox
conditions, pH, and ion activities, and water-to-rock ratios. In such
an environment, lateral transport is limited, which results in an
isochemical alteration of rocks (Ehlmann et al., 2011). Open
systems, i.e., systems that have contact with the atmosphere, have
higher water-to-rock ratios, which results in leaching and changes
in the bulk elemental composition. In addition, pH-values are
more acidic, which causes magnesium, calcium, and sometimes
silica to become more mobile, while aluminum, iron(III), and
titanium remain immobile. Consequently, as weathering of mafic
rocks proceeds, residual rocks become more aluminum rich.
Leaching of mafic rocks results, for example, in Al-clays (kaolinite,
montmorillionite) and iron oxide assemblages. Additionally,
more acidic pH-values hinder the formation of Fe/Mg smectites
(Ehlmann et al., 2011). Bridges and Schwenzer (2012) investigated
Martian nakhlite meteorites to thermochemically model the
composition, temperature and redox conditions of the water that

formed the observed hydrous alteration. They showed that the
nakhlite parent rocks on Mars encountered a CO2-rich hydrother-
mal fluid at 150rTr200 1C, pH 6–8 with a water-to-rock ratio
(W/R) r300. Under these conditions, Fe-rich carbonates were
precipitated within brittle fractures. As the fluid cooled to 50 1C, at
pH 9 and a water-to-rock ratio of 6, Fe-rich phyllosilicate pre-
cipitated, followed in turn by rapid precipitation of an amorphous
gel. It was enriched in the most soluble species (e.g., K, Na), of
alkaline pH, and similar to terrestrial, i.e., not seawater-influenced,
dilute brines in basaltic terrains on Earth (Bridges and Schwenzer,
2012). Bridges and Schwenzer (2012) concluded that environ-
ments associated with this type of fluid were habitable, unlike
those associated with acid-sulphate fluids. Considering the timing
of the nakhlite alteration, they argued for an impact-generated
hydrothermal alteration of the nakhlites at the margins of an
impact crater. While only a small number of extensive Noachian
terrains (near Argyre, Terra Sirenum, Claritas Fossae, Nili Fossae)
show evidence for hydrothermal activity, most deposits are
associated with impact craters (e.g., Wyatt et al., 2001; Mustard
et al., 2008, 2009; Buczkowski et al., 2010; Ehlmann et al., 2011;
Bishop et al., 2013). Not only are impact craters important for the
exhumation/excavation of hydrothermal minerals, but also for
the formation of their own hydrothermal systems that might
have been potential habitats for early life (Osinski et al., 2013).
Schwenzer et al. (2012) have modeled the consequences of
impacts into a 2–6 km-thick cryosphere and concluded that even
small impacts (5–20 km diameter) will physically and/or thermally
disturb the cryosphere enough to create liquid water through the
melting of subsurface ice in an otherwise dry and frozen environ-
ment. Interaction of liquid water with the substrate results in
alteration phases, including hydrous silicates (e.g., nontronite,
chlorite, serpentine) (Schwenzer et al., 2012). Osinski et al.
(2013) proposed that there are six main locations associated with
craters where hydrothermal systems are particularly likely to
form. These locations include (1) crater-fill impact melt rocks
and melt-bearing breccias, (2) interior of central uplifts, (3) outer
margin of central uplifts, (4) impact ejecta deposits, (5) crater rim
regions, and (6) post-impact crater lake sediments. From Earth,
several types of impact crater-related hydrothermal minerals are
known, including (1) hydrothermally altered target rock assem-
blages, (2) primary hydrothermal minerals precipitated from
solutions, and (3) secondary assemblages formed by the altera-
tion of primary hydrothermal minerals (Osinski et al., 2013).
Products of post-impact hydrothermal activity at various terres-
trial impact craters include hydrated silicate phases (e.g., quartz,
saponite, montmorillonite, celadonite, kaolinite, halloysite, epi-
dote, amphibole-group minerals, chlorite-group minerals, micas,
zeolites). In addition, carbonates (calcite, dolomite) often form in
terrestrial hydrothermal systems, as well as sulfides (e.g., marca-
site, pyrite, bornite, chalcopyrite, spalerite, galena), native gold,
platinum-group elements, oxides (e.g., magnetite, ilmenite),
sulfates (e.g., gypsum), and halides (e.g., fluorite, halite) (Osinski
et al., 2013). At least some of those minerals have also been
spectrally detected on Mars, including Fe/Mg-rich smectites,
Al-rich smectites, chlorite, phrenite, kaolinite, halloysite, silica
glass, illite, and muscovite, sulfates, carbonates, serpentine, opa-
line silica, gypsum, jarosite, haematite, goethite, perchlorates, (e.g.,
Ehlmann et al., 2011; Tornabene et al., 2013). Bishop et al. (2013)
identified surface outcrops and deposit of Fe/Mg-rich phyllosili-
cates and Al-smectites in the central Libya Montes valley region.
These aqueous minerals are located in the mouth region of a
fluvial valley, featuring exposures of the deep bedrock and in the
central peak of a 47 km diameter impact crater. Those units are
either the result of hydrothermal alteration processes as a con-
sequence of the Isidis Basin formation or of chemical alteration
through pervasive fluvial activity (Bishop et al., 2013).

Fig. 7. Oblique view towards southeast of Gale crater (CTX mosaic overlain on a
HRSC DEM, vertical exaggeration: �2). The crater measures 150 km in diameter.

R. Jaumann et al. / Planetary and Space Science 98 (2014) 128–145 137



3.5. Permafrost environments

According to the definition of permafrost (Everdingen, 2005),
Mars may be considered a permafrost planet. It exhibits a wide
variety of periglacial-like landforms that, based on stratigraphic
relations and impact crater densities, appear to be very young.
While these individual landforms are widely distributed on Mars,
they form spatially associated assemblages (landscapes) primarily
in mid-latitude regions. On Earth, periglacial landforms indicate
specific cold-climate conditions, commonly involving freeze–thaw
cycles, and they are typically, but not necessarily, linked to
permafrost dynamics. A main question related to the recent
climate of Mars concerns the existence of liquid water: Is it
possible to explain the observed landforms by dry processes, only
involving the condensation and sublimation of H2O, or is the
action of liquid water, in whatever amounts, required to form
them? To contribute to possible answers to this question, Ulrich
et al. (2010) and Hauber et al. (2011a) analyzed representative
examples of such Martian landforms and performed analogue
studies on terrestrial periglacial landscapes, comparing them to
mid-latitude landforms on Mars that were hypothesized to be
records of recent ice ages on Mars (Head et al., 2003a).

The mid- and high-latitudes of both hemispheres on Mars are
covered by a smooth mantle deposit that is suggested to originate
from airfall deposition of dust cemented by ice precipitated from
the atmosphere (Mustard et al., 2001). Deposition and desiccation
of this proposed dust-ice mantle is suggested to be caused by spin–
orbit variations (Laskar et al., 2002, 2004) in the recent past (Head
et al., 2003a). These latitudinal bands on Mars are also characterized
by a variety of landforms such as i.e., polygonal patterned terrain (e.
g., Mangold, 2005; Levy et al., 2009), viscous flow features (e.g.,
Milliken et al., 2003), gullies (e.g., Malin and Edgett, 2000a; Balme
et al., 2006; Kneissl et al., 2010), solifluction lobes (e.g., Gallagher
et al., 2011; Johnsson et al., 2012) and scalloped terrain
(Morgenstern et al., 2007; Lefort et al., 2010; Zanetti et al., 2010;
Séjourné et al., 2011). Morphologically, these landforms resemble
cold-climate features on Earth formed by freeze–thaw or thaw
processes of H2O–ice. Crater size-frequency distributions on homo-
genous dust-ice mantle deposits (Raack et al., 2012; Willmes et al.,
2012) indicate that the last major deposition phases of the dust-ice
mantle occurred within the last several million years. Degradational
features within thick dust-ice mantle deposits (scalloped terrain) on
Mars resemble terrestrial thermokarst landforms (Morgenstern
et al., 2007). Studies on scalloped terrain (Ulrich et al., 2010)
indicate that the last major deposition and degradation phases of
the dust-ice mantle occurred within the last several million years.
Morphologic analyses of the scalloped terrain showed that its
formation can be explained by sublimation of a water–ice rich
substrate, which was possibly supported by thaw processes causing
mass wasting (Ulrich et al., 2010).

Apart from recently detected recurrent slope lineae (McEwen
et al., 2011), gullies are probably the best evidence for transient
liquid water activity on Mars in the recent past (e.g., Malin and
Edgett, 2000a; Costard et al., 2002; Dickson et al., 2007). Age
estimations of gullies based on crater size-frequency distributions
indicate that they were active within the last few million years
(Reiss et al., 2004; Schon et al., 2009). Many gullies on Mars are
incised into dust-ice mantle deposits indicating that they evolved
from thawing of H2O–ice stored in the dust-ice mantle in the
recent past (e.g., Christensen, 2003; Bleamaster and Crown, 2005;
Reiss et al., 2009; Raack et al., 2012). Gullies eroding into the
bedrock and not associated with the dust-ice mantle are possibly
formed by snowmelt (Dickson et al., 2007; Head et al., 2008).
Observed present-day gully activity on Mars is limited to the
formation of small-scale channels or morphologic changes within
larger gullies and is either caused by transient melting of small

amounts of H2O–ice (Reiss et al., 2010) or CO2-sublimation
processes (Diniega et al., 2011; Dundas et al., 2012).

Various terrestrial permafrost environments and their charac-
teristic landforms have been suggested as analogues of very recent
Martian surface features that may be related to ice and perhaps
some amount of liquid water. For example, pingos and ice wedge
polygons in northern Canada have been proposed as analogues for
fractured mounds and polygonally fractured ground in Utopia
Planitia, respectively (Soare et al., 2005; Haltigin et al., 2010).
On the extremes of cold and dry landscapes on Earth, the
McMurdo Dry Valleys in Antarctica were long recognized as useful
analogues for Mars (Anderson et al., 1972), and recent work has
focused on detailed descriptions of their microclimates and related
geomorphic processes (Marchant and Head, 2007). Of particular
interest are sublimation polygons in the Dry Valleys (Marchant
et al., 2002), because their formation does not involve freeze–thaw
cycles. A similar process may occur on present-day Mars and form
the ubiquitous polygons in the northern high latitudes on Mars
(Levy et al., 2009). This example also illustrates the caveats of
deducing processes from comparisons of morphologically similar
(analogous) landforms, since landforms (e.g., polygons) at different
sites may look almost identical, yet may have formed by different
processes in different environments. Field campaigns were con-
ducted at several sites in Siberia and Svalbard that display various
glacial and periglacial landforms in continuous permafrost terrain
(Ulrich et al., 2010; Hauber et al., 2011a). Examples of such
landforms are rock glaciers (Hauber et al., 2008; Rossi et al.,
2011; Van Gasselt et al., 2011) and patterned ground (Ulrich
et al., 2011). The field work confirmed that remote sensing-based
interpretations of some landforms (e.g., thermal contraction cracks),
relating them to specific processes (e.g., freeze/thaw cycles), are
complicated by the ambiguity of morphologic characteristics (equi-
finality) (Ulrich et al., 2011). Although this analogue sites were
situated in relatively “wet” periglacial environments, the results
suggest that many periglacial features on Mars may be explained by
“dry” permafrost processes without the need to invoke liquid water
(Hauber et al., 2011b), although several scenarios, which may not be
mutually exclusive, could account for the observations. Nevertheless,
it appears that at least limited amounts of liquid water are required to
fully explain the morphology of gullies and debris flows in periglacial
environments (Hauber et al., 2011b; Reiss et al., 2011; Johnsson et al.,
in press) and the existence of slope-related flow features interpreted
as solifluction lobes (Jacobshagen et al., 2000; Johnsson et al., 2012).
This notion is consistent with thermal modeling of a slope location in
Utopia Planitia, where specific spin–orbit conditions have enabled
thawing in the recent past, but not within the last few million years
(Ulrich et al., 2012). These results are consistent with Levy et al., 2011,
those who conclude that sublimation, not melting, is themain physical
process of ice loss on Mars today, but that episodic melting in specific
morphologic niches with favorable microclimates may occur and
provides liquid water for gully formation.

4. Implication for the evolution of water on Mars

The surface of Mars exhibits numerous geomorphological land-
forms that are the result of fluvial and glacial processes. These
features occur in all regions on Mars and were possibly formed
throughout the entire geologic history of Mars, although with
decreasing intensity over time. These features comprise erosional
landforms such as dendritic and longitudinal valley networks, large
outflow channels, small-scale gullies, lacustrine environments
including paleolakes and deltas, weathering environments with
layered chemical alteration products, and permafrost environments
and their surface exposures. From a habitability point of view it is
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necessary to constrain the amounts of water and the time of its
availability required to form certain fluvial and glacial features in
order to constrain the time span available for organic evolution. It is
obvious that the restricted accessibility to a number of factors such
as small-scale features like river channel terraces, subsurface access
of layered deposits, measurements of pore volumes, infiltration
rates, and cryosphere thickness will complicate such quantitative
analyses. Therefore, only rough estimates of water availability and
the duration of fluvial and glacial processes can be achieved (e.g.,
Kreslavsky and Head, 2002; Harrison and Grimm, 2005; Irwin et al.,
2005b; Jaumann et al., 2005, 2010; Schon et al., 2009, 2012; Fassett
and Head, 2011; Carr, 2012; Erkeling et al., 2012). Nevertheless, the
typical fluvial and glacial locations studied in context with the
Helmholtz Alliance ‘Planetary Evolution and Life' project, as dis-
cussed above, allow to roughly constrain the evolution of water
on Mars.

Dendritic valley networks mostly occur in topographic elevated
mountainous regions, probably above the level of groundwater
release. The dendritic pattern of most of the valleys is poorly
developed with low branching index and relatively large bifurca-
tion angles indicating incomplete erosion. However, the valley
patterns, the topographic position and the erosional style suggest
surface runoff due to rainfall or melting of accumulated snow. For
example, the ages of the Libya Montes dendritic valleys date to the
Noachian with a termination of dendritic valley formation around
�3.8 Ga (Erkeling et al., 2010, 2012). This can be interpreted as
evidence for a change of the erosive environment and climate
conditions at the boundary from the Noachian to the Hesperian
epoch in this extended region. The discharges in the Libya Montes
region range from 15,000 m3/s to 430,000 m3/s with an increase of
up to one order of magnitude from precipitation to volcanic
triggered groundwater release, and yield transported sediment
volumes of up to 250 t/s (Irwin et al., 2005a; Jaumann et al., 2005,
2010; Hoke et al., 2011). These values are consistent with those at
other regions on Mars (Irwin et al., 2005a; Jaumann et al., 2005,
2010; Hoke et al., 2011). The estimated discharge rates indicate the
formation of the observed valleys on Mars within relatively short
periods with episodic and multi-genetic erosion events over most
of the Martian history. Studies show a clear change in the style of
water release during the early Hesperian (from precipitation to
ground-ice/water release due to induced volcanic heat) and sur-
face runoff lasted until the mid-Amazonian (Irwin et al., 2005a;
Jaumann et al., 2005, 2010; Hoke et al., 2011). Dissected landforms
with dendritic patterns on the wall of Newton Crater also indicate
fluvial activity due to surface runoff (Petau et al., 2012a, 2012b).
Runoff production rates for the Newton valley system amount to
about 5 cm/d (Petau et al., 2012b), which is in the medium range of
estimated Martian runoff production rates (Irwin et al., 2005a;
Jaumann et al., 2005, 2010; Hoke et al., 2011). However, the
concentration of these fluvial landforms at a relatively small, oro-
graphically controlled area as in the Newton Crater suggests specific
locally defined climate conditions. The fluvial activity within Newton
Crater presumably appeared episodically from the Noachian to the
Hesperian. In summary, dendritic valley networks show evidence for
precipitation in the Noachian but their spatial distribution, estimated
discharge, and runoff production rates suggest limited erosion and
rather episodically than continuous fluvial activity (e.g., Irwin et al.,
2005b; Jaumann et al., 2005, 2010).

Other time constraints for aqueous periods are deltas. A
population of deltas and fan-like deposits in Xanthe Terra imply
that some valleys with associated deltas were formed by short-
lived aqueous processes (Hauber et al., 2009), as indicated by
fluvial transport modeling (Kleinhans et al., 2010). The formation
of valleys and related deltas did not require sustained periods of
global climatic conditions favoring widespread precipitation. Sur-
face runoff and valley formation require slopes and terminate at

base levels. Consequently most paleolakes on Mars are distributed
in the Noachian highlands and have mainly formed during the
Noachian/Early Hesperian Epoch (Fassett and Head, 2008a; Grant
et al., 2008; Ansan et al., 2011). The lakes in Terra Sirenum, that
formed by the drying of Eridiana lake (Adeli et al., 2012, 2013), are
related to the large Ma'adim Vallis outflow channel (Irwin, 2004).
The desiccation of the giant lake, resulting in the percolation of
water, may have produced a widespread top-down weathering of
the ground, producing a sequence of phyllosilicate-rich materials
(Le Deit et al., 2012). Evidence for standing bodies of water on the
surface of Mars is also found at the boundary between the Libya
Montes and southern Isidis Planitia (Erkeling et al., 2012) and by
multiple occurrences of closed- and open-basin paleolakes and
delta deposits in the central Libya Montes highlands (Cabrol and
Grin, 1999, 2001; Crumpler and Tanaka, 2003; Erkeling et al., 2010,
2012). Surface outcrops and deposit of Fe/Mg-rich phyllosilicates
and Al-smectites are also found in the central Libya Montes valley
region (Bishop et al., 2013). Those units are either the result of
hydrothermal alteration processes as a consequence of the Isidis
Basin formation or of chemical alteration through pervasive fluvial
activity (Bishop et al., 2013).

Investigations of phyllosilicate formation processes in Valles
Marineris, chaotic terrains and Gale Crater suggest that the clays
developed in a neutral to alkaline environments during the
Noachian Epoch. Some members formed under a subarid climate,
others indicate a more intense drainage at the surface under
slightly acidic conditions (Le Deit et al., 2012). The local phyllosi-
licate preservation points to a relatively dry environment with
intermittent aqueous activity (Sowe et al., 2012).

Mars exhibits a wide variety of periglacial-like landforms that
appear to be very young. Although many periglacial features on
Mars may be explained by “dry” processes without the need to
invoke liquid water (Hauber et al., 2011b), it appears that at least
limited amounts of liquid water are required to fully explain the
morphology of gullies in periglacial (Reiss et al., 2010).

All the observed erosional and depositional landforms that
involve water or ice in their formation indicate relatively short
processing times and more likely episodic than perseverative events.

5. Summary and conclusions

Liquid water is the most basic known prerequisite for life.
Although other factors such as energy and nutrients are also
necessary, any geological approach to habitability must start with
the identification of zones where liquid water is or was active. There
is consensus among most researchers that the surface of Mars
displays many morphological features indicative of liquid water (e.
g., MarsChannelWorkingGroup, 1983; Hynek and Phillips, 2001;
Fassett and Head, 2005; Harrison and Grimm, 2005; Ansan and
Mangold, 2006; Irwin et al., 2008; Barnhart et al., 2009; Bouley et al.,
2009; Mangold et al., 2012). The occurrence of hydrated minerals
suggests a wide range of surface alterations under the influence of
water (e.g., Bibring et al., 2007; Bishop et al., 2008, 2012, 2013; Le
Deit et al., 2010; Story et al., 2010; Erkeling et al., 2012; Gross et al.,
2012; Sowe et al., 2012) providing nutrients and chemical energy.

Based on these observations, Mars can be considered habitable
with respect to water, at least partly, in space and time. Research
in the HGF Alliance has expanded the known database of aqueous
environments (Fig. 8). This encompasses both the early history of
Mars (�4–3 billion years ago: Erkeling et al. (2010,2012), Jaumann
et al. (2010), Petau et al. (2012a), Bishop et al. (2013), Warner et al.
(2013)) and the very recent past (the last few years: Reiss et al.
(2010), Ulrich et al. (2010), Raack et al. (2012)). Studies in context
with Helmholtz Alliance ‘Planetary Evolution and Life’, as dis-
cussed above, have also constrained the duration of geological
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processes that rely on liquid water. Thus, modeling of flow
transport processes revealed that the formation of deltas on Mars
geologically requires only brief timespans (Kleinhans et al., 2010)
and, based on discharge estimates, the formation of erosional
valleys also needs less than a million years and most likely
occurred only episodically (e.g., Irwin et al., 2005a; Jaumann
et al., 2005, 2010; Hoke et al., 2011).

Mineral assemblages and stratigraphic relationships of phyllo-
silicates suggest a development primarily under a neutral to
alkaline environment during the Noachian Epoch under a subarid
climate. However weathering and chemical alteration products
indicate multiple alteration, erosion and aqueous episodes that at
least provide temporally aqueous environments including hydro-
thermal conditions.

Recently formed gullies and fans might have experienced even
shorter periods of liquid water (minutes to hours), as shown by
the identification of debris flow deposits that were formed by
short-lived high-energy mass-wasting events (Reiss et al., 2010).
However, most gullies show morphological characteristics, which
indicate that they were formed by repeated flow events involving
fluvial-dominated processes, such as snow deposits melting
during high-obliquity phases (Reiss et al., 2010). The surface of
Mars shows many landforms that resemble cold-climate features
on Earth. Permafrost on Earth is known to host rich habitats
containing cold-adapted microbial communities. Permafrost envir-
onments on Mars might represent habitable zones if liquid water
is present, e.g., as a consequence of freeze–thaw cycles. However,
the results of the Alliance work indicate that scenarios without
liquid water might also account for many of the observed morpho-
logical phenomena that are analogous to terrestrial permafrost
landforms (Ulrich et al., 2010; Hauber et al., 2011a,b).

The water- and ice-related environments on Mars are potential
habitable places with respect to the fundamental environmental
factor that requires at least episodic access to liquid water. Even

with no adequate global climatic conditions, such as a long lasting
warm and wet Mars, water- and ice-related surface processes
occurred on an episodic timescale. However, the duration of
the episodically appropriate conditions seems to be restricted to
geologically relatively short periods.
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