5 research outputs found
sj-zip-1-pih-10.1177_09544119221123431 – Supplemental material for An AI based digital-twin for prioritising pneumonia patient treatment
Supplemental material, sj-zip-1-pih-10.1177_09544119221123431 for An AI based digital-twin for prioritising pneumonia patient treatment by Neeraj Kavan Chakshu and Perumal Nithiarasu in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</p
Atomistic Modeling of F‑Actin Mechanical Responses and Determination of Mechanical Properties
A molecular structural mechanics
(MSM) model was developed for
F-actins in cells, where the force constants describing the monomer
interaction were achieved using molecular dynamics simulations. The
MSM was then employed to predict the mechanical properties of F-actin.
The obtained Young’s modulus (1.92 GPa), torsional rigidity
(2.36 × 10<sup>–26</sup> Nm<sup>2</sup>), and flexural
rigidity (10.84 × 10<sup>–26</sup> Nm<sup>2</sup>) were
found to be in good agreement with existing experimental data. Subsequently,
the tension-induced bending was studied for F-actins as a result of
their helical structure. Mechanical instability was also investigated
for the actin filaments in filopodial protrusion by considering the
reinforcing effect of the actin-binding proteins. The predicted buckling
load agreed well with the experimentally obtained stall force, showing
a pivotal role of the actin-binding protein in regulating the stiffness
of F-actin bundles during the formation of filopodia protrusion. Herein,
it is expected that the MSM model can be extended to the mechanics
of more complex filamentous systems such as stress fibers and actin
meshwork
Experimental and Simulation Results from A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics
Detailed experimental and simulated result
Data-driven calculation of porous geometry-dependent permeability and fluid-induced wall shear stress within tissue engineering scaffolds
It is commonly known that mechanical stimulation, for example, wall shear stress (WSS), can affect cellular behaviours. In vitro experiments have been performed by applying fluid-induced WSS to investigate the cell physiology and pathology. Porous scaffolds are used in these experiments for housing and facilitating the micro-physical/chemical environment on cells during 3-dimensional (3D) cell culturing. It is known that scaffold porous geometries influence scaffold permeability and internal WSS. Computational simulations are commonly employed to determine the WSS; however, these simulations can be computationally expensive and may not be readily accessible to everyone due to a knowledge gap. To address this limitation, this study proposes an empirical equation for calculating the scaffold permeability based on the Kozeny-Carman equation. The new equation considers the porous geometric features, providing an accurate estimation of the scaffold permeability. Furthermore, the study introduces a new correlation between WSS and permeability, aiming to establish an efficient and precise estimation of internal WSS. This correlation enables efficient estimation of the WSS within porous scaffolds without relying on computationally demanding simulations. Therefore, the output from this study can negate the issues of using computational simulation for determining scaffold permeability and internal WSS under perfusion flow by providing empirical equations.</p
アイヌ遺骨問題に関する関係者インタビュー
北海道には先住民族であるアイヌ民族が住んでいます。独自の文化と言語を持つ彼らに対して、開拓の名のもとに同化政策を押し進められたのが約150 年前です。また、世界的に形質人類学がもてはやされた時期からは、盗掘ともとれる大々的な収集が組織的に行われました。そして、それは主に各地の大学機関によって行われ、北海道大学が一番多くアイヌの遺骨を保管していました(2019年11月に慰霊施設に集約されました)。1980 年代からアイヌ民族による遺骨返還の請求があり、ごく一部の遺骨に関しては返還できたものの、それ以降2010年代は裁判の和解による返還しか実現できていません。
多くの科学技術や研究開発が人々の幸福を望んで行われていることは間違いないと思います。しかし、その結果が研究者の意図に反して社会との軋轢を生じる場合もあります。その一例がアイヌ遺骨の収集の歴史と現在だと思います。本調査では、北海道大学が研究のために収集・保管しているアイヌの遺骨、副葬品など、過去の研究が現在にもたらした「負の側面」に注視し、ステークホルダーへのインタビューを敢行します。過去の研究がもたらした結果に、それぞれの立場で、どのように向き合っているのかを、わずかでも浮き彫りにできればと思います