237 research outputs found
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of ExB is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems
The search for transient astrophysical neutrino emission with IceCube-DeepCore
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
A search for high-energy neutrinos interacting within the IceCube detector
between 2010 and 2012 provided the first evidence for a high-energy neutrino
flux of extraterrestrial origin. Results from an analysis using the same
methods with a third year (2012-2013) of data from the complete IceCube
detector are consistent with the previously reported astrophysical flux in the
100 TeV - PeV range at the level of per flavor and reject a
purely atmospheric explanation for the combined 3-year data at .
The data are consistent with expectations for equal fluxes of all three
neutrino flavors and with isotropic arrival directions, suggesting either
numerous or spatially extended sources. The three-year dataset, with a livetime
of 988 days, contains a total of 37 neutrino candidate events with deposited
energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy
neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event
displays, and other data tables are included after the final page of the
article. Changed from the initial submission to reflect referee comments,
expanding the section on atmospheric backgrounds, and fixes offsets of up to
0.9 seconds in reported event times. Address correspondence to: J. Feintzeig,
C. Kopper, N. Whitehor
Physics Results from the AMANDA Neutrino Detector
In the winter season of 2000, the AMANDA (Antarctic Muon And Neutrino Detector Array) detector was completed to its final state. We report on major physics results obtained from the AMANDA-B10 detector, as well as initial results of the full AMANDA-II detector
- …