6,347 research outputs found

    Modelling the exposure to Cronobacter sakazakii by consumption of a cocoa-milk-based beverage processed by pulsed electric fields

    Get PDF
    peer-reviewedM.C. Pina-Pérez is grateful to CSIC for providing a DOCTOR contract linked to the INNPACTO project IPT-2011-1724-060000. This study was carried out with funds from BISOSTAD project PSE-060000-2009-003, Generalitat Valenciana I+D+I emergent research groups GV/2010/064 and CYCIT project AGL2010-22206-C02-01.Infants’ exposure (Nf ) to Cronobacter sakazakii via the consumption of infant-rich-inpolyphenols cocoa-milk-based beverages (CCX-M) treated with high-intensity pulsed electric fields (PEF) was evaluated. Monte Carlo simulation enabled the prediction of the variability in C. sakazakii load in beverages at the time of consumption to be estimated. Different scenarios (initial contamination levels; PEF treatment conditions; and time-temperature combinations of CCX-M beverages storage after treatment) were simulated. Cocoa addition and PEF treatment resulted in the most influential input factors to control bacterial final load. Cronobacter spp. exposure risk was reduced by a maximum of 100 times at 95% of iterations due to addition of cocoa at 5 g/100 mL, corresponding to scenario 3 (PEF: 15 kV/cm–3,000 μs; storage 120 h at 8 °C). Moreover, the probability of illness for a healthy population was reduced from 2.15 × 10-8, in the baseline scenario, to 4.78 × 10-10 due to cocoa addition and application of 15 kV/cm–3,000 μs PEF treatment.BISOSTAD projec

    Flexible system of multiple RGB-D sensors for measuring and classifying fruits in agri-food Industry

    Get PDF
    The productivity of the agri-food sector experiences continuous and growing challenges that make the use of innovative technologies to maintain and even improve their competitiveness a priority. In this context, this paper presents the foundations and validation of a flexible and portable system capable of obtaining 3D measurements and classifying objects based on color and depth images taken from multiple Kinect v1 sensors. The developed system is applied to the selection and classification of fruits, a common activity in the agri-food industry. Being able to obtain complete and accurate information of the environment, as it integrates the depth information obtained from multiple sensors, this system is capable of self-location and self-calibration of the sensors to then start detecting, classifying and measuring fruits in real time. Unlike other systems that use specific set-up or need a previous calibration, it does not require a predetermined positioning of the sensors, so that it can be adapted to different scenarios. The characterization process considers: classification of fruits, estimation of its volume and the number of assets per each kind of fruit. A requirement for the system is that each sensor must partially share its field of view with at least another sensor. The sensors localize themselves by estimating the rotation and translation matrices that allow to transform the coordinate system of one sensor to the other. To achieve this, Iterative Closest Point (ICP) algorithm is used and subsequently validated with a 6 degree of freedom KUKA robotic arm. Also, a method is implemented to estimate the movement of objects based on the Kalman Filter. A relevant contribution of this work is the detailed analysis and propagation of the errors that affect both the proposed methods and hardware. To determine the performance of the proposed system the passage of different types of fruits on a conveyor belt is emulated by a mobile robot carrying a surface where the fruits were placed. Both the perimeter and volume are measured and classified according to the type of fruit. The system was able to distinguish and classify the 95% of fruits and to estimate their volume with a 85% of accuracy in worst cases (fruits whose shape is not symmetrical) and 94% of accuracy in best cases (fruits whose shape is more symmetrical), showing that the proposed approach can become a useful tool in the agri-food industry.This project has been supported by the National Commission for Science and Technology Research of Chile (Conicyt) under FONDECYT grant 1140575 and the Advanced Center of Electrical and Electronic Engineering - AC3E (CONICYT/FB0008)

    Rational Map of CP^2 with No Invariant Foliation

    Get PDF
    Conference Poster presented at: Midwest Dynamical Systems Conference, Champaign/Urbana, IL November 1-3, 2013

    Rational Maps of CP^2 with No Invariant Foliation

    Get PDF
    We present simple examples of rational maps of the complex projective plane with equal first and second dynamical degrees and no invariant foliation

    The relationship between zinc intake and growth in children aged 1-8 years: a systematic review and meta-analysis

    Get PDF
    BACKGROUND/OBJECTIVES: It is estimated that zinc deficiency affects 17% of the world's population, and because of periods of rapid growth children are at an increased risk of deficiency, which may lead to stunting. This paper presents a systematic review and meta-analysis of the randomised controlled trials (RCTs) that assess zinc intake and growth in children aged 1–8 years. This review is part of a larger systematic review by the European Micronutrient Recommendations Aligned Network of Excellence that aims to harmonise the approach to setting micronutrient requirements for optimal health in European populations (www.eurreca.org). SUBJECT/METHODS: Searches were performed of literature published up to and including December 2013 using MEDLINE, Embase and the Cochrane Library databases. Included studies were RCTs in apparently healthy child populations aged from 1 to 8 years that supplied zinc supplements either as capsules or as part of a fortified meal. Pooled meta-analyses were performed when appropriate. RESULTS: Nine studies met the inclusion criteria. We found no significant effect of zinc supplementation of between 2 weeks and 12 months duration on weight gain, height for age, weight for age, length for age, weight for height (WHZ) or WHZ scores in children aged 1–8 years. CONCLUSIONS: Many of the children in the included studies were already stunted and may have been suffering from multiple micronutrient deficiencies, and therefore zinc supplementation alone may have only a limited effect on growth

    Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates IV: The Puzzle of the Extremely Red OGLE-TR-82 Primary Solved

    Full text link
    We present precise new V, I, and K-band photometry for the planetary transit candidate star OGLE-TR-82. Good seeing V-band images acquired with VIMOS instrument at ESO VLT allowed us to measure V=20.6+-0.03 mag star in spite of the presence of a brighter neighbour about 1" away. This faint magnitude answers the question why it has not been possible to measure radial velocities for this object. One transit of this star has been observed with GMOS-S instrument of GEMINI-South telescope in i and g-bands. The measurement of the transit allows us to verify that this is not a false positive, to confirm the transit amplitude measured by OGLE, and to improve the ephemeris. The transit is well defined in i-band light curve, with a depth of A_i=0.034 mag. It is however, less well defined, but deeper (A_g=0.1 mag) in the g-band, in which the star is significantly fainter. The near-infrared photometry obtained with SofI array at the ESO-NTT yields K=12.2+-0.1 and V-K=8.4+-0.1, so red that it is unlike any other transit candidate studied before. Due to the extreme nature of this object, we have not yet been able to measure velocities for this star, but based on the new data we consider two different possible configurations:(1) a nearby M7V star, or (2) a blend with a very reddened distant red giant. The nearby M7V dwarf hypothesis would give a radius for the companion of R_p=0.3+-0.1 R_J, i.e. the size of Neptune. Quantitative analysis of near-IR spectroscopy finally shows that OGLE-TR-82 is a distant, reddened metal poor early K giant. This result is confirmed by direct comparison with stellar templates that gives the best match for a K3III star. Therefore, we discard the planetary nature of the companion. Based on all the new data, we conclude that this system is a main-sequence binary blended with a background red giant.Comment: 26 pages, 9 figures, ApJ accepte

    Effect of the air pressure on electro-Fenton process

    Get PDF
    Electro-Fenton process is considered a very promising tool for the treatment of waste waters contaminated by organic pollutants refractant or toxic for microorganisms used in biological processes [1-6]. In these processes H2O2 is continuously supplied to an acidic aqueous solution contained in an electrolytic cell from the two-electron reduction of oxygen gas, directly injected as pure gas or bubbled air. Due to the poor solubility of O2 in aqueous solutions, two dimensional cheap graphite or carbon felt electrodes give quite slow generation of H2O2, thus resulting in a slow abatement of organics. In this context, we report here a series of studies [7-9] on the effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. The effect of air pressure, current density, mixing and nature of the organic pollutant was evaluated. [1] E. Brillas, I. Sirés, M.A. Oturan, Chem. Rev., 109 (2009) 6570-6631. [2] C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Chem. Rev. 115 (2015) 13362–13407. [3] M. Panizza, G. Cerisola, Chem. Rev. 109 (2009) 6541–6569. [4] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Environ. Sci. Pollut. Res. 21 (2014) 8336–8367. [5] C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35 (2006) 1324–1340. [6] B.P.P. Chaplin, Environ. Sci. Process. Impacts. 16 (2014) 1182–1203. [7] O. Scialdone, A. Galia, C. Gattuso, S. Sabatino, B. Schiavo, Electrochim. Acta, 182 (2015) 775-780. [8] J.F. Pérez, A. Galia, M.A. Rodrigo, J. Llanos, S. Sabatino, C. Sáez, B. Schiavo, O. Scialdone, Electrochim. Acta, 248 (2017) 169-177. [9] A.H. Ltaïef, S. Sabatino, F. Proietto, A. Galia, O. Scialdone, O. 2018, Chemosphere, 202, 111-118

    Breast cancer analysis by confocal energy dispersive micro-XRD

    Get PDF
    In this work, the confocal energy dispersive micro-XRD technique has been employed to efficiently study differences between normal and malignant carcinomas in breast tissues. This technique has been implemented with low angular divergence glass monocapillaries in the excitation and detection channels. The microdiffractometer operates with a scattering angle of (20.3 ± 0.9)° that defines a cross section for analysis (0.178 mm × 0.175 mm), with a depth resolution of 1.18 mm. The obtained momentum transfer resolution between 3.9 and 10.9% was found to be highly useful to identify the scattering profiles of adipose tissues without any data processing. Differentiation between tissues with similar scattering profiles, such as fibroglandular and neoplastic tissues, has been achieved by processing the spectra within the framework of diffraction theory for scattering intensity. The obtained results allowed the development of a deterministic diagnostic model based on the evaluation of the depth profiles by confocal micro-XRD. In this model, the modulation of the scattering profiles caused by X-ray attenuation was analyzed to differentiate neoplastic tissues. The spatial resolution of the technique was the key aspect of the process, helping to detect variations in X-ray attenuation and to select uniform volume of analysis without superimposed scattering profiles.Fil: Escudero, Rodrigo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Cabral, María C.. Hospital Provincial Maternal Dr. Felipe Lucini; ArgentinaFil: Valladares, Mariana. Hospital Provincial Maternal Dr. Felipe Lucini; ArgentinaFil: Franco, María A.. Hospital Provincial Maternal Dr. Felipe Lucini; ArgentinaFil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    The origin of the Acheulean: the 1.7 million-year-old site of FLK West, Olduvai Gorge (Tanzania)

    Get PDF
    The appearance of the Acheulean is one of the hallmarks of human evolution. It represents the emergence of a complex behavior, expressed in the recurrent manufacture of large-sized tools, with standardized forms, implying more advance forethought and planning by hominins than those required by the precedent Oldowan technology. The earliest known evidence of this technology dates back to c. 1.7 Ma. and is limited to two sites (Kokiselei [Kenya] and Konso [Ethiopia]), both of which lack fauna. The functionality of these earliest Acheulean assemblages remains unknown. Here we present the discovery of another early Acheulean site also dating to c. 1.7 Ma from Olduvai Gorge. This site provides evidence of the earliest steps in developing the Acheulean technology and is the oldest Acheulean site in which stone tools occur spatially and functionally associated with the exploitation of fauna. Simple and elaborate large-cutting tools (LCT) and handaxes co-exist at FLK West, showing that complex cognition was present from the earliest stages of the Acheulean. Here we provide a detailed technological study and evidence of the use of these tools on the butchery and consumption of fauna, probably by early Homo erectus sensu lato
    • …
    corecore