17 research outputs found

    Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics

    Full text link
    Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum G\=o models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' nonnative topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common G\=o-like schemes.Comment: 10 pages, 4 Postscript figures (will appear on PRL

    Generation of a gene-corrected human isogenic line (UAMi006-A) from propionic acidemia patient iPSC with an homozygous mutation in the PCCB gene using CRISPR/Cas9 technology

    Get PDF
    Propionic acidemia (PA) is an inherited metabolic disease caused by mutations in the PCCA and PCCB genes. We have previously generated an induced pluripotent stem cell (iPSC) line (UAMi004-A) from a PA patient with the c.1218_1231del14ins12 (p.Gly407Argfs*14) homozygous mutation in the PCCB gene. Here, we report the generation of the isogenic control in which the mutation was genetically corrected using CRISPR/Cas9 technology. Off-target editing presence was excluded and the iPSCs had typical embryonic stem cell-like morphology and normal karyotype that expressed pluripotency markers and maintained their in vitro differentiation potential.Functional Genomics of Muscle, Nerve and Brain Disorder

    Antisense oligonucleotide-induced amyloid precursor protein splicing modulation as a therapeutic approach for Dutch-type cerebral amyloid angiopathy

    Get PDF
    Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein (APP) gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (A beta) domain of APP, and leads to accumulation of toxic A beta peptide in and around the cerebral vasculature. We have designed an antisense oligonucleotide (AON) approach that results in skipping of exon 17, generating a shorter APP isoform that lacks part of the A beta domain and the D-CAA mutation. We demonstrate efficient AON-induced skipping of exon 17 at RNA level and the occurrence of a shorter APP protein isoform in three different cell types. This resulted in a reduction of A beta 40 in neuronally differentiated, patient-derived induced pluripotent stem cells. AON-treated wild-type mice showed successful exon skipping on RNA and protein levels throughout the brain. These results illustrate APP splice modulation as a promising therapeutic approach for D-CAA.Functional Genomics of Muscle, Nerve and Brain Disorder

    Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is a hereditary neurodegenerative disease caused by a CAG repeat expansion in exon 8 of the ATXN1 gene. We generated induced pluripotent stem cells (hiPSCs) from a SCA1 patient and his non-affected sister by using non-integrating Sendai Viruses (SeV). The resulting hiPSCs are SeVfree, express pluripotency markers, display a normal karyotype, retain the mutation (length of the CAG repeat expansion in the ATXN1 gene) and are able to differentiate into the three germ layers in vitro

    Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis

    Get PDF
    Objectives: To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches. Methods: Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid). Results: OA-related changes in methylation at a specific CpG dinucleotide upstream of DIO2 caused significant upregulation of its expression (ß=4.96; p=0.0016). This effect was enhanced and appeared driven specifically by DIO2 rs225014 risk allele carriers (ß=5.58, p=0.0006). During in vitro chondrogenesis, DIO2 overexpression resulted in a significant reduced capacity of chondrocytes to deposit extracellular matrix (ECM) components, concurrent with significant induction of ECM degrading enzymes (ADAMTS5, MMP13) and markers of mineralisation (ALPL, COL1A1). Given their concurrent and significant upregulation of expression, this process is likely mediated via HIF-2a/RUNX2 signalling. In contrast, we showed that inhibiting deiodinases during in vitro chondrogenesis contributed to prolonged cartilage homeostasis as reflected by significant increased deposition of ECM components and attenuated upregulation of matrix degrading enzymes. Conclusions: Our findings show how genetic variation at DIO2 could confer risk to OA and raised the possibility that counteracting thyroid signalling may be a novel therapeutic approach

    Generation of 3 human induced pluripotent stem cell lines LUMCi005-A, B and C from a Hereditary Cerebral Hemorrhage with Amyloidosis-Dutch type patient

    Get PDF
    Hereditary Cerebral Hemorrhage with Amyloidosis-Dutch type (HCHWA-D) is an autosomal dominant hereditary disease caused by a point mutation in exon 17 of the APP gene. We generated human induced pluripotent stem cells (hiPSCs) from a symptomatic HCHWA-D patient by using non-integrating Sendai virus (SeV). The newly generated hiPSCs express all pluripotency markers, have a normal karyotype, carry the Dutch mutation, can differentiate in the three germ layers in vitro and are SeV free

    Colocalisation of the protein tyrosine phosphatases PTP-SL and PTPBR7 with beta4-adaptin in neuronal cells.

    No full text
    The mouse gene Ptprr encodes the neuronal protein tyrosine phosphatases PTP-SL and PTPBR7. These proteins differ in their N-terminal domains, with PTP-SL being a cytosolic, membrane-associated phosphatase and PTPBR7 a type I transmembrane protein. In this study, we further explored the nature of the PTP-SL-associated vesicles in neuronal cells using a panel of organelle markers and noted a comparable subcellular distribution for PTP-SL and the beta4-adaptin subunit of the AP4 complex. PTP-SL, PTPBR7 and beta4-adaptin are localised at the Golgi apparatus and at vesicles throughout the cytoplasm. Immunohistochemical analysis demonstrated that PTP-SL, PTPBR7 and beta4-adaptin are all endogenously expressed in brain. Interestingly, coexpression of PTP-SL and beta4-adaptin leads to an altered subcellular localisation for PTP-SL. Instead of the Golgi and vesicle-type staining pattern, still observable for beta4-adaptin, PTP-SL is now distributed throughout the cytoplasm. Although beta4-adaptin was found to interact with the phosphatase domain of PTP-SL and PTPBR7 in the yeast two-hybrid system, it failed to do so in transfected neuronal cells. Our data suggest that the tyrosine phosphatases PTP-SL and PTPBR7 may be involved in the formation and transport of AP4-coated vesicles or in the dephosphorylation of their transmembrane cargo molecules at or near the Golgi apparatus
    corecore