122 research outputs found

    Richer concepts are better remembered: number of features effects in free recall

    Get PDF
    Many models of memory build in a term for encoding variability, the observation that there can be variability in the richness or extensiveness of processing at encoding, and that this variability has consequences for retrieval. In four experiments, we tested the expectation that encoding variability could be driven by the properties of the to-be-remembered item. Specifically, that concepts associated with more semantic features would be better remembered than concepts associated with fewer semantic features. Using feature listing norms we selected sets of items for which people tend to list higher numbers of features (high NoF) and items for which people tend to list lower numbers of features (low NoF). Results showed more accurate free recall for high NoF concepts than for low NoF concepts in expected memory tasks (Experiments 1–3) and also in an unexpected memory task (Experiment 4). This effect was not the result of associative chaining between study items (Experiment 3), and can be attributed to the amount of item-specific processing that occurs at study (Experiment 4). These results provide evidence that stimulus-specific differences in processing at encoding have consequences for explicit memory retrieval

    Context matters: How do task demands modulate the recruitment of sensorimotor information during language processing?

    Get PDF
    Many theories of semantic representation propose that simulations of sensorimotor experience contribute to language processing. This can be seen in the body-object interaction effect (BOI; how easily the human body can interact with a word’s referent). Words with high BOI ratings (e.g., ball) are processed more quickly than words with low BOI ratings (e.g., cloud) in various language tasks. This effect can be modulated by task demands. Previous research established that when asked to decide if a word is an object (entity condition), a BOI effect is observed, but when asked to decide if a word is an action (action condition), there is no BOI effect. It is unclear whether the null behavioral effect in the action condition reflects top-down modulation of task-relevant sensorimotor information or the absence of bottom-up activation of sensorimotor simulations. We investigated this question using EEG. In Experiment 1 we replicated the previous behavioral findings. In Experiment 2, 50 participants were assigned to either the entity or action conditions and responded to the same word stimuli. In both conditions we observed differences in ERP components related to the BOI effect. In the entity condition the P2 mean amplitude was significantly more positive for high compared to low BOI words. In the action condition the N400 peak latency was significantly later for high compared to low BOI words. Our findings suggest that BOI information is generated bottom-up regardless of task demands and modulated by top-down processes that recruit sensorimotor information relevant to the task decision

    An Abundance of Riches: Cross-Task Comparisons of Semantic Richness Effects in Visual Word Recognition

    Get PDF
    There is considerable evidence (e.g., Pexman et al., 2008) that semantically rich words, which are associated with relatively more semantic information, are recognized faster across different lexical processing tasks. The present study extends this earlier work by providing the most comprehensive evaluation to date of semantic richness effects on visual word recognition performance. Specifically, using mixed effects analyses to control for the influence of correlated lexical variables, we considered the impact of number of features, number of senses, semantic neighborhood density, imageability, and body–object interaction across five visual word recognition tasks: standard lexical decision, go/no-go lexical decision, speeded pronunciation, progressive demasking, and semantic classification. Semantic richness effects could be reliably detected in all tasks of lexical processing, indicating that semantic representations, particularly their imaginal and featural aspects, play a fundamental role in visual word recognition. However, there was also evidence that the strength of certain richness effects could be flexibly and adaptively modulated by task demands, consistent with an intriguing interplay between task-specific mechanisms and differentiated semantic processing

    Grasping the Alternative: Reaching and Eyegaze Reveal Children’s Processing of Negation

    Get PDF
    There is evidence that children begin to understand negation early in the preschool years, but children’s processing of negation is not well understood. We examined children’s processing of denial negation using a variant of the visual world paradigm called the Shopping Task. In this task, participants help a puppet to find the items on a shopping list, selecting from two potential items on each trial in response to the puppet’s affirmative (“the next item is an apple”) or negation (“the next item is not an orange”) sentence. In this binary decision context, participants’ eye gaze and reaching behavior were tracked as they selected the item the puppet wants. Participants were 78 children aged 4–5 years and a comparison group of 30 adults. Results showed that children took longer to process negation than affirmative sentences, and that this difference arose early in processing. Further, children’s eye gaze behavior suggested that on negation trials they regularly looked first to the negated object and were considering the negated meaning early in processing. Adults did not take longer to process negation than affirmative sentences, but their eye gaze behavior also indicated early consideration of negated meanings for negation sentences. We also examined relationships between children’s language and executive function skills and their processing of negation and found no significant relationships. We conclude that both adults and children activate to-be-negated information in the processing of negation. Children, however, are less efficient at processing negation in this context

    Getting a grip on sensorimotor effects in lexical-semantic processing

    Get PDF
    One of the strategies that researchers have used to investigate the role of sensorimotor information in lexical-semantic processing is to examine effects of words’ rated body-object interaction (BOI; the ease with which the human body can interact with a word’s referent). Processing tends to be facilitated for words with high BOI compared to words with low BOI, across a wide variety of tasks. Such effects have been referenced in debates over the nature of semantic representations, but their theoretical import has been limited by the fact that BOI is a fairly coarse measure of sensorimotor experience with words’ referents. In the present study we collected ratings for 621 words on seven semantic dimensions (graspability, ease of pantomime, number of actions, animacy, size, danger, and usefulness) in order to investigate which attributes are most strongly related to BOI ratings, and to lexical-semantic processing. BOI ratings were obtained from previous norming studies (Bennett, Burnett, Siakaluk, & Pexman, 2011; Tillotson, Siakaluk, & Pexman, 2008) and measures of lexical-semantic processing were obtained from previous behavioural megastudies involving the semantic categorization task (concrete/abstract decision; Pexman, Heard, Lloyd, & Yap, 2017) and the lexical decision task (Balota et al., 2007). Results showed that the motor dimension of graspability, ease of pantomime, and number of actions were all related to BOI and that these dimensions together explained more variance in semantic processing than did BOI ratings alone. These ratings will be useful for researchers who wish to study how different kinds of bodily interactions influence lexical-semantic processing and cognition

    How Does Meaning Come to Mind? Four Broad Principles of Semantic Processing

    No full text
    When we see or hear a word, we can rapidly bring its meaning to mind. The process that underlies this ability is quite complex. Over the past two decades, considerable progress has been made towards understanding this process. In this paper, I offer four broad principles of semantic processing derived from lexical-semantic research. The first principle is that the relationship between form and meaning is not so arbitrary and I explore that by describing efforts to understand the relationship between form and meaning, highlighting advances from my own lab on the topics of sound symbolism and iconicity. The second principle is that more is better and I summarize previous research on semantic richness effects, and how those effects reveal the nature of semantic representation. The third principle is the many and various properties of abstract concepts. I point to abstract meaning as a challenge for some theories of semantic representation. In response to that challenge, I outline what has been learned about how those meanings are acquired and represented. The fourth principle is that experience matters, and I summarize research on the dynamic and experience-driven nature of semantic processing, detailing ways in which processing is modified by both immediate and long-term context. Finally, I describe some next steps for lexical-semantic research
    corecore