5 research outputs found

    Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction.

    Get PDF
    BACKGROUND: The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. RESULTS: Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. CONCLUSIONS: Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance.The study was supported by the Israel Academy of Sciences grants no. 876/ 14 and 1294/17, and Chief Scientist of the Israeli Ministry of Agriculture 0469/14 (to MFE and ES)

    Correspondence on Lovell et al. : identification of chicken genes previously assumed to be evolutionarily lost

    No full text
    Through RNA-Seq analyses, we identified 137 genes that are missing in chicken, including the long-sought-after nephrin and tumor necrosis factor genes. These genes tended to cluster in GC-rich regions that have poor coverage in genome sequence databases. Hence, the occurrence of syntenic groups of vertebrate genes that have not been observed in Aves does not prove the evolutionary loss of such genes

    Additional file 1: of Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction

    No full text
    RNA-seq. Data. Table S1. Information about the RNA sequencing. Table S2: Transcripts identified by RNA-seq in visceral fat of broiler and layer females at the onset of sexual maturation. Table S3 Enriched pathways obtained using Ingenuity software and the RNA-seq differential transcripts (FDR ≤ 0.05; absolute fold change ≥1.5). A. List of enriched pathways. B. Schematic presentation of the enriched pathways. C. Expression pattern of the differentially expressed transcripts (FDR ≤ 0.05; absolute fold change ≥1.5) implicated in the in the PTEN pathway. Excel Worksheet xlsm 3.1 MB. (XLSX 3193 kb
    corecore