14 research outputs found

    Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty

    Full text link
    Tesis por compendio[EN] Currently, there is a trend towards sustainability, especially in developed countries, where the concerns of society about environmental degradation and social problems have increased. Following this trend, the construction sector is one of the most influential sectors due to its high economic, environmental, and social impacts. At the same time, there is an increase in the demand for transport, which drives a need to develop and maintain the necessary infrastructure for this purpose. Taking all these factors into account, bridges become a key structure and therefore assessment of sustainability throughout their whole life-cycle is essential. The main objective of this thesis is to propose a methodology that allows assessment of the sustainability of a bridge under uncertain initial conditions (subjectivity of the decision-maker or variability of initial parameters) and optimization of the design to obtain a robust optimal bridge. To this end, an extensive bibliographic review of all the works that perform assessments of the sustainability of bridges through the valuation of criteria related to their main pillars (economic, environmental, or social) has been carried out. In this review, it has been observed that the most comprehensive way to evaluate the environmental and social pillars is through the use of life-cycle impact assessment methods. These methods allow sustainability assessment to be performed for the whole life-cycle of the bridge. This process provides valuable information to decision-makers for the assessment and selection of the most sustainable bridge. However, the decision-makers' subjective assessments of the relative importance of the criteria influence the final assessment of sustainability. For this reason, it is necessary to create a methodology that reduces the associated uncertainty and seeks robust solutions according to the opinion of decision-makers. In addition, for bridges, the design and decision-making are conditioned by the initially defined parameters. This leads to solutions that may be sensitive to small changes in these initial conditions. A robust optimal design makes it possible to obtain optimal solutions and structurally stable designs under variations of the initial conditions as well as sustainable designs that are not influenced by the preferences of the stakeholders who are part of the decision-making process. Thus, obtaining a robust optimal design becomes a probabilistic optimization process that has a high computational cost. For this reason, the use of metamodels has been integrated into the proposed methodology. Specifically, Latin hypercube sampling is used for the definition of the initial sample and a kriging model is used for the definition of the mathematical approximation. In this way, kriging-based heuristic optimization reduces the computational cost by more than 90% with respect to conventional heuristic optimization while obtaining very similar results. This thesis provides, first of all, an extensive bibliographic review of both the criteria used for the assessment of sustainability of bridges and the different methods of life-cycle impact assessment to obtain a complete profile of the environmental and social pillars. Subsequently, a methodology is defined for the full assessment of sustainability, using life-cycle impact assessment methods. Likewise, an approach is proposed that makes it possible to obtain structures with little influence from the structural parameters, as well as from the preferences of the different decision-makers regarding the sustainability criteria. The methodology provided in this thesis is applicable to any other type of structure.[ES] Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial. El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones. Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares. Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.[CA] Actualment existeix una tendència cap a la sostenibilitat, especialment en els països desenrotllats on la preocupació de la societat pel deteriori ambiental i els problemes socials ha augmentat. Seguint aquesta tendència, el sector de la construcció és un dels sectors que major influència té a causa del seu alt impacte econòmic, ambiental i social. Al mateix temps, existeix un increment en la demanda de transport que provoca la necessitat de desenrotll i manteniment de les infraestructures necessàries per a tal fi. En tot açò, els ponts es converteixen en una estructura clau, i per tant, la valoració de la sostenibilitat al llarg de tota la seua vida és essencial. L'objectiu principal d'aquesta tesi doctoral és proposar una metodologia que permeta valorar la sostenibilitat d'un pont baix condicions inicials incertes (subjectivitat del decisor o variabilitat dels paràmetres inicials) i optimitzar el disseny per a obtenir ponts òptims robusts. Per a això, s'ha realitzat una extensa revisió bibliogràfica de tots els treballs en els quals es realitza un anàlisis de la sostenibilitat mitjançant la valoració de criteris relacionats amb els seus pilars principals (econòmic, ambiental o social). En aquesta revisió s'ha observat que la forma més completa de valorar els pilars ambientals i socials és mitjançant l'ús de mètodes d'anàlisis de cicle de vida. Aquests mètodes permeten realitzar la valoració de la sostenibilitat al llarg de totes les etapes de la vida dels ponts. Tot aquest procediment proporciona informació molt valuosa als decisors per a la valoració i selecció del pont més sostenible. No obstant això, les valoracions subjectives dels decisors sobre la importància dels criteris influeixen en l'avaluació final de la sostenibilitat. Per aquesta raó, és necessari crear una metodologia que reduïsca la incertesa associada i busque solucions robustes enfront de les opinions dels agents implicats en la presa de decisions. A més, el disseny i la presa de decisions en ponts està condicionat pels paràmetres inicialment definits. Açò condueix a solucions que poden ser sensibles front a menuts canvis en les dites condicions inicials. El disseny òptim robust permet obtenir dissenys òptims i estructuralment estables front a variacions de les condicions inicials, i també dissenys sostenibles i poc influenciables per les preferències dels decisors que formen part del procés de presa de decisió. D'aquesta manera, el disseny òptim robust es converteix en un procés d'optimització probabilística que requereix un gran cost computacional. Per aquest motiu, l'ús de metamodels s'ha integrat en la metodologia proposta. En concret, s'ha utilitzat l'hipercub llatí per a la definició de la mostra inicial i els models kriging per a la definició de l'aproximació matemàtica. D'aquesta forma, l'optimització heurística basada en kriging ha permés reduir més d'un 90% el cost computacional respecte a l'optimització heurística convencional obtenint resultats molt similars. Aquesta tesi doctoral proporciona en primer lloc, una ampla revisió bibliogràfica, tant dels criteris utilitzats per a la valoració de la sostenibilitat en ponts com dels diferents mètodes d'anàlisis de cicle de vida per a obtenir un perfil complet dels pilars ambientals i socials. Posteriorment, es defineix una metodologia per a la valoració completa de la sostenibilitat, utilitzant mètodes d'anàlisis de cicle de vida. Així mateix, es proposa un enfocament que permet obtenir estructures poc influenciables pels paràmetres estructurals, així com per les preferències dels diferents decisors enfront dels criteris sostenibles. La metodologia proporcionada en aquesta tesi doctoral és aplicable a qualsevol altre tipus d'estructura. Nº de páginas:I would like to acknowledge the economic support of the Spanish Ministry of Economy and Competitiveness, formerly called Spanish Ministry of Science and Innovation. This thesis has been possible thanks to the FPI fellowship and the financially support of BRIDLIFE (Research Project BIA2014-56574-R) and DIMALIFE (Project BIA2017-85098-R).Penadés Plà, V. (2020). Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147480TESISCompendi

    Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge

    Full text link
    [EN] The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R].Penadés-Plà, V.; García-Segura, T.; Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics. 8(3):1-14. https://doi.org/10.3390/math8030398S11483Lee, K.-H., & Kang, D.-H. (2006). A robust optimization using the statistics based on kriging metamodel. Journal of Mechanical Science and Technology, 20(8), 1169-1182. doi:10.1007/bf02916016Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002Ahsan, R., Rana, S., & Ghani, S. N. (2012). Cost Optimum Design of Posttensioned I-Girder Bridge Using Global Optimization Algorithm. Journal of Structural Engineering, 138(2), 273-284. doi:10.1061/(asce)st.1943-541x.0000458García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007Pnevmatikos, N. G., & Thomos, G. C. (2013). Stochastic structural control under earthquake excitations. Structural Control and Health Monitoring, 21(4), 620-633. doi:10.1002/stc.1589García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006Sun, X., Fu, H., & Zeng, J. (2018). Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics, 7(1), 12. doi:10.3390/math7010012Rodriguez-Gonzalez, P. T., Rico-Ramirez, V., Rico-Martinez, R., & Diwekar, U. M. (2019). A New Approach to Solving Stochastic Optimal Control Problems. Mathematics, 7(12), 1207. doi:10.3390/math7121207Moayyeri, N., Gharehbaghi, S., & Plevris, V. (2019). Cost-Based Optimum Design of Reinforced Concrete Retaining Walls Considering Different Methods of Bearing Capacity Computation. Mathematics, 7(12), 1232. doi:10.3390/math7121232Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140Valdebenito, M. A., & Schuëller, G. I. (2010). A survey on approaches for reliability-based optimization. Structural and Multidisciplinary Optimization, 42(5), 645-663. doi:10.1007/s00158-010-0518-6Doltsinis, I., & Kang, Z. (2004). Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 193(23-26), 2221-2237. doi:10.1016/j.cma.2003.12.055Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., & Yang, R.-J. (2004). Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization, 27(5). doi:10.1007/s00158-004-0389-9Martínez-Frutos, J., & Martí, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(2), 97-105. doi:10.1016/j.rimni.2013.01.003Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1-13. doi:10.1007/s00158-001-0160-4Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170-189. doi:10.1016/j.engstruct.2018.05.084Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25(2), 99-116. doi:10.1007/s00158-002-0277-0Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015Chuang, C. H., Yang, R. J., Li, G., Mallela, K., & Pothuraju, P. (2007). Multidisciplinary design optimization on vehicle tailor rolled blank design. Structural and Multidisciplinary Optimization, 35(6), 551-560. doi:10.1007/s00158-007-0152-0Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. doi:10.2113/gsecongeo.58.8.1246Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal, 39(12), 2233-2241. doi:10.2514/2.1234Forrester, A. I. J., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45(1-3), 50-79. doi:10.1016/j.paerosci.2008.11.001Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. Engineering with Computers, 17(2), 129-150. doi:10.1007/pl00007198Camp, C. V., & Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363-372. doi:10.1016/j.engstruct.2012.09.004Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213

    Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty

    Full text link
    [EN] Today, bridge design seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of the opinions of stakeholders regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-maker's preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety and corrosion initiation time. In this particular case, 211 efficient solutions are reduced to two preferred solutions which have a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decision making. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).García-Segura, T.; Penadés-Plà, V.; Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production. 202:904-915. doi:10.1016/j.jclepro.2018.08.177S90491520

    Optimization of prestressed concrete road bridges by the response surface methodology

    Full text link
    [ES] Los puentes son infraestructuras esenciales para mejorar la comunicación dentro de un territorio. La optimización constituye un proceso que permite obtener puentes de menor coste bajo ciertas restricciones. Debido a la complejidad de los problemas estructurales, la optimización matemática no es útil y se recurre a la optimización heurística debido a su mayor eficacia. En este trabajo se presenta una alternativa a la optimización heurística basada en los metamodelos. El procedimiento consiste en una reducción de los factores iniciales mediante el diseño de experimentos, reduciendo significativamente la complejidad del problema sin perder información. Posteriormente, se aplica la metodología de la superficie de respuesta para obtener el óptimo del problema. Este procedimiento se aplica a un tablero de un puente de losa maciza que cumpla todas las restricciones de las normativas.[EN] Bridges are essential infrastructures to improve communication in a region. Optimization is a process that can be used to obtain cheaper bridges under certain restrictions. Due to the complexity of the structural problems, mathematical optimization is not useful and heuristic optimization is used due its greater efficiency. This work presents an alternative to heuristic optimization based on metamodels. The process consists of reducing the initial factors by design of experiments, which significantly reduces the complexity of the problem without losing information. Then, response surface methodology is applied to obtain the optimum of the problem. This process is applied to a solid slab bridge deck that accomplish with all regulatory restrictions.Los autores agradecen la financiación del Ministerio de Economía y Competitividad, junto con los fondos FEDER (Proyecto: BIA2017-85098-R) y del Consejo Nacional de Desarrollo Científico y Tecnológico CNPq/Brasil (Proc. 302736/2017-4).Penadés-Plà, V.; Yepes, V.; Kripka, M. (2019). Optimización de puentes pretensados mediante la metodología de la superficie de respuesta. Revista CIATEC-UPF. 11(2):22-35. https://doi.org/10.5335/ciatec.v11i2.9159S223511

    Life cycle assessment of earth-retaining walls: An environmental comparison

    Full text link
    [EN] Earth-retaining walls are one of the most common structures in civil engineering, a discipline of the construction sector, which is known to produce one of the highest environmental impacts. Therefore, developing cleaner design and construction practices could contribute to a more sustainable future for our planet. To make a step towards this goal, this study comprises the life cycle assessment (LCA) of the four most common earth-retaining walls built between 1 to 6 m of height: cantilever walls, gravity walls, masonry walls and gabion walls to obtain the best solutions for the environment. To assess the environmental impacts caused throughout their whole life-cycle including the production, construction, use and end of life phases, we used the OpenLCA software, the ecoinvent 3.3 database and the ReCiPe (H) method. The associated uncertainties have been considered and the results are provided in both midpoint and endpoint approaches. Our findings show that gabion and masonry walls produce the lowest global impact. On the one hand, gabion walls cause less damage to human health but on the other hand, masonry walls cause less damage to the ecosystems. Furthermore, gravity walls produce similar impacts to gabion and masonry walls between 1 and 3 m of height as well as fewer impacts than cantilever walls for a height of 4 m. In conclusion, gabion and masonry walls are preferable to concrete walls for heights between 1 and 6 m and cantilever walls should be used over gravity walls for greater heights than 4.5 m.This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Project BIA2017-85098-R).Pons, J.; Penadés-Plà, V.; Yepes, V.; Martí Albiñana, JV. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production. 192:411-420. doi:10.1016/j.jclepro.2018.04.268S41142019

    An Optimization-LCA of a Prestressed Concrete Precast Bridge

    Full text link
    [EN] The construction sector is one of the most active sectors, with a high economic, environmental and social impact. For this reason, the sustainable design of structures and buildings is a trend that must be followed. Bridges are one of the most important structures in the construction sector, as their construction and maintenance are crucial to achieve and retain the best transport between different places. Nowadays, the choice of bridge design depends on the initial economic criterion but other criteria should be considered to assess the environmental and social aspects. Furthermore, for a correct choice, the influence of these criteria during the bridge life-cycle must be taken into account. This study aims to analyse the life-cycle environmental impact of efficient structures from the economic point of view. Life-cycle assessment process is used to obtain all the environmental information about bridges. In this paper, a prestressed concrete precast bridge is cost-optimized and afterwards, the life-cycle assessment is carried out to achieve the environmental information about the bridge.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).Penadés-Plà, V.; García-Segura, T.; Martí Albiñana, JV.; Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability. 10(3):685-1-685-17. doi:10.3390/su10030685S685-1685-1710

    Study of criteria used to obtain a sustainable bridge

    Full text link
    [Otros] The sustainable development of bridges is mainly based on meeting the three pillars of sustainability (economic, social and environmental factors) which have different goals. Each main criterion groups a large number of subcritera. Therefore, achieve a sustainable bridge is a complicate problem that involves a high number of factors in each stage of bridge life-cycle. For this reason, decision-making is a helpful process to solve the sustainability problem. The objective of this work is to review the bridge life-cycle decision-making problems that involve criteria that represent the pillars of the sustainability. While some works only consider criteria related to one or two of these pillars, the most current works consider criteria that involve all the pillars of sustainability. Furthermore, most of the works reviewed only study one stage of bridge life-cycle. This study shows the criteria used in some revised journal articles in each bridge life-cycle phase and, the multi-attribute decision-making used to achieve the sustainability. In addition, a small explanation of the obtained information will be carried out.The authors acknowledge the support from the Ministry of Competitiveness and FEDER funding (Project BIA2014-56574-R)Penadés-Plà, V.; Yepes, V.; García-Segura, T.; Martí Albiñana, JV. (2017). Study of criteria used to obtain a sustainable bridge. ISEC. 1-6. https://doi.org/10.14455/ISEC.res.2017.177S1

    Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges

    Full text link
    [EN] The goal of sustainability involves a consensus among economic, environmental and social factors. Due to climate change, environmental concerns have increased in society. The construction sector is among the most active high environmental impact sectors. This paper proposes new features to consider a more detailed life-cycle assessment (LCA) of reinforced or prestressed concrete structures. Besides, this study carries out a comparison between two optimal posttensioned concrete box-girder road bridges with different maintenance scenarios. ReCiPe method is used to carry out the life-cycle assessment. The midpoint approach shows a complete environmental profile with 18 impact categories. In practice, all the impact categories make their highest contribution in the manufacturing and use and maintenance stages. Afterwards, these two stages are analyzed to identify the process which makes the greatest contribution. In addition, the contribution of CO2 fixation is taken into account, reducing the environmental impact in the use and maintenance and end of life stages. The endpoint approach shows more interpretable results, enabling an easier comparison between different stages and solutions. The results show the importance of considering the whole life-cycle, since a better design reduces the global environmental impact despite a higher environmental impact in the manufacturing stage.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (BRIDLIFE Project: BIA2014-56574-R).Penadés-Plà, V.; Martí Albiñana, JV.; García-Segura, T.; Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability. 9(10):1864-1-1864-21. doi:10.3390/su9101864S1864-11864-2191

    Accelerated optimization method for low-embodied energy concrete box-girder bridge design

    Full text link
    [EN] Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).Penadés-Plà, V.; García-Segura, T.; Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures. 179:556-565. https://doi.org/10.1016/j.engstruct.2018.11.015S55656517

    A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design

    Full text link
    The construction of bridges has been necessary for societies since ancient times, when the communication between and within towns, cities or communities was established. Until recently, the economic factor has been the only one considered in the decision-making of any type of construction process for bridges. However, nowadays, the objective should not be just the construction of bridges, but of sustainable bridges. Economic, social and environmental factors, which form the three pillars of sustainability, have been recently added. These three factors usually have conflicting perspectives. The decision-making process allows the conversion of a judgment into a rational procedure to reach a compromise solution. The aim of this paper is to review different methods and sustainable criteria used for decision-making at each life-cycle phase of a bridge, from design to recycling or demolition. This paper examines 77 journal articles for which different methods have been used. The most used methods are briefly described. In addition, a statistical study was carried out on the Multiple Attribute Decision-making papers reviewed.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (BRIDLIFE Project: BIA2014-56574-R). In addition, the authors wish to thanks the comments of Dan M. Frangopol from Center for Advanced Technology for Large Structural Systems.Penadés-Plà, V.; García-Segura, T.; Martí Albiñana, JV.; Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability. 8(12):1295-01-1295-21. https://doi.org/10.3390/su8121295S1295-011295-2181
    corecore