793 research outputs found

    Preliminary Investigation of Continuous Self-Improvement, Confidence, & Resilience

    Get PDF
    https://fuse.franklin.edu/ss2018/1039/thumbnail.jp

    A Child-Centered Response to the Elkins Family Law Task Force

    Full text link
    In Elkins v. Superior Court, 163 P.3d 160 (Cal. 2007), California’s Supreme Court asked the Judicial Council to form a task force to make recommendations to increase “access to justice” in family court, because it was concerned about rules, policies, and procedures that put self-represented litigants at an unfair disadvantage in parentageand dissolution cases. Neither the task force’s report in 2010 nor the legislation that the report inspired the same year addresses children’s due process rights, even though children ordinarily have no access to justice. This Article shows that due process sometimes requires the trial court to appoint counsel for children to obtain the information the court needs to address children’s interests. This Article also explains why trial courts should not construe the new Elkins laws to impose new and unique restrictions on children’s lawyers, and proposes new legislation and court rules to clarify children’s due process rights and minors’ counsel’s ethical duties when custody is at issue in family court

    Mars Spacecraft Power System Development Final Report

    Get PDF
    Development of optimum Mariner spacecraft power system for application to future flyby and orbiter mission

    Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease

    Get PDF
    We investigated Ca(2+) handling in isolated brain synaptic and non-synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non-synaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca(2+) uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca(2+) capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca(2+) uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen because of mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca(2+) followed by recovery to near resting levels. Following recovery of cytosolic Ca(2+), mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca(2+), suggesting similar Ca(2+) release and, consequently, Ca(2+) loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca(2+) handling in brain mitochondria of YAC128 mice. We demonstrate that mutant huntingtin (mHtt) binds to brain synaptic and nonsynaptic mitochondria and the amount of mitochondria-bound mHtt correlates with increased mitochondrial Ca(2+) uptake capacity. We propose that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage

    A Child-Centered Response to the Elkins Family Law Task Force

    Full text link
    In Elkins v. Superior Court, 163 P.3d 160 (Cal. 2007), California’s Supreme Court asked the Judicial Council to form a task force to make recommendations to increase “access to justice” in family court, because it was concerned about rules, policies, and procedures that put self-represented litigants at an unfair disadvantage in parentageand dissolution cases. Neither the task force’s report in 2010 nor the legislation that the report inspired the same year addresses children’s due process rights, even though children ordinarily have no access to justice. This Article shows that due process sometimes requires the trial court to appoint counsel for children to obtain the information the court needs to address children’s interests. This Article also explains why trial courts should not construe the new Elkins laws to impose new and unique restrictions on children’s lawyers, and proposes new legislation and court rules to clarify children’s due process rights and minors’ counsel’s ethical duties when custody is at issue in family court

    Regulation of neuronal calcium homeostasis in Huntington's

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Huntington’s Disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder. There is no cure for HD and the existing therapies only alleviate HD symptoms without eliminating the cause of this neuropathology. HD is linked to a mutation in the huntingtin gene, which results in an elongation of the poly-glutamine stretch in the huntingtin protein (Htt). A major hypothesis is that mutant Htt (mHtt) leads to aberrant Ca2+ homeostasis in affected neurons. This may be caused by increased Ca2+ influx into the cell via the N-methyl-Daspartate (NMDA)-subtype of glutamate receptors. The contribution of two major Ca2+ removal mechanisms, mitochondria and plasmalemmal Na+/Ca2+ exchangers (NCX), in neuronal injury in HD remains unclear. We investigated Ca2+ uptake capacity in isolated synaptic (neuronal) and nonsynaptic mitochondria from the YAC128 mouse model of HD. We found that both Htt and mHtt bind to brain mitochondria and the amount of mitochondriabound mHtt correlates with increased mitochondrial Ca2+ uptake capacity. Mitochondrial Ca2+ accumulation was not impaired in striatal neurons from YAC128 mice. We also found that expression of the NCX1 isoform is increased with age in striatum from YAC128 mice compared to striatum from wild-type mice. Interestingly, mHtt and Htt bind to the NCX3 isoform but not to NCX1. NCX3 expression remains unchanged. To further investigate Ca2+ homeostasis modulation, we examined the role of collapsin response mediator protein 2 (CRMP2) in wild-type neurons. CRMP2 is viewed as an axon guidance protein, but has been found to be involved in Ca2+ signaling. We found that CRMP2 interacts with NMDA receptors (NMDAR) and disrupting this interaction decreases NMDAR activity. CRMP2 also interacts with and regulates NCX3, resulting in NCX3 internalization and decreased activity. Augmented mitochondrial Ca2+ uptake capacity and an increased expression of NCX1 in the presence of mHtt suggest a compensatory reaction in response to increased Ca2+ influx into the cell. The role of NCX warrants further investigation in HD. The novel interactions of CRMP2 with NMDAR and NCX3 provide additional insight into the complexity of Ca2+ homeostasis regulation in neurons and may also be important in HD neuropathology

    The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix

    Get PDF
    The midzone is the domain of the mitotic spindle that maintains spindle bipolarity during anaphase and generates forces required for spindle elongation (anaphase B). Although there is a clear role for microtubule (MT) motor proteins at the spindle midzone, less is known about how microtubule-associated proteins (MAPs) contribute to midzone organization and function. Here, we report that budding yeast Ase1p is a member of a conserved family of midzone-specific MAPs. By size exclusion chromatography and velocity sedimentation, both Ase1p in extracts and purified Ase1p behaved as a homodimer. Ase1p bound and bundled MTs in vitro. By live cell microscopy, loss of Ase1p resulted in a specific defect: premature spindle disassembly in mid-anaphase. Furthermore, when overexpressed, Ase1p was sufficient to trigger spindle elongation in S phase–arrested cells. FRAP revealed that Ase1p has both a very slow rate of turnover within the midzone and limited lateral diffusion along spindle MTs. We propose that Ase1p functions as an MT cross-bridge that imparts matrix-like characteristics to the midzone. MT-dependent networks of spindle midzone MAPs may be one molecular basis for the postulated spindle matrix
    corecore