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Introduction
Progression from a nontransformed normal cell to a malignant 
cancer cell requires multiple genetic changes that hyperactivate 
oncogenes while restraining tumor suppressors (Hanahan and 
Weinberg, 2011). This occurs via two distinct, but not mutually 
exclusive, mechanisms: the acquisition of genetic mutations, 
and gene copy number changes.

Genetic mutations arise as a consequence of cells failing 
to efficiently detect, repair, and/or respond to DNA damage, 
and may be subtle (e.g., single nucleotide changes) or more 
complex (e.g., amplifications, deletions, insertions, transloca-
tions; Negrini et al., 2010). Mutations can arise spontaneously, 
as a consequence of endogenous genotoxic stress, such as from 
stalled/collapsing replication forks generated during S phase or 
reactive oxygen species produced by normal metabolic activity 
(Spry et al., 2007; Hoeijmakers, 2009; Branzei and Foiani, 
2010; Ciccia and Elledge, 2010). However, environmental and/
or genetic perturbations that markedly increase DNA damage—
and subsequent mutation rates—greatly facilitate oncogenesis. 
This is best illustrated by the significant predisposition to 
cancer in familial genetic diseases where components of DNA 
repair or checkpoint signaling are lost or mutated; examples 
include hereditary nonpolyposis colorectal cancer syndrome 
(HNPCC; mutations in MLH1, MSH2, MSH6, or PMS2; Spry  
et al., 2007; Hoeijmakers, 2009), hereditary breast and ovarian 
cancer syndrome (mutations in BRCA1 and BRCA2; Fackenthal 

and Olopade, 2007), Fanconi anemia (caused by mutations in 
any of a number of Fanconi genes important for DNA repair; 
Moldovan and D’Andrea, 2009), and Li-Fraumeni syndrome 
(mutations in TP53; Varley et al., 1997).

Independent of DNA damage and mutation, whole chro
mosome and segmental aneuploidies can also dramatically 
alter gene copy number of relevant oncogenes and tumor 
suppressors. Recent mouse models demonstrate that merely 
elevating the rates of chromosome missegregation is sufficient 
to promote tumor development in vivo, at least in part by facili-
tating loss of heterozygosity of known tumor suppressor genes 
(Weaver et al., 2007; Baker et al., 2009; Baker and van Deursen, 
2010). A number of cellular defects are known to generate 
whole chromosome aneuploidy, including atypical mitotic spin-
dle assembly, inefficient chromosome congression, abnormal 
microtubule dynamics, cohesion and condensation defects,  
supernumerary centrosomes, and a defective spindle assembly 
checkpoint (Schvartzman et al., 2010; Compton, 2011; Gordon 
et al., 2012; Holland and Cleveland, 2012). The common factor 
among these defects is that they all manifest during mitosis, 
when chromosomes physically separate. Thus, it is widely ac-
cepted that abnormal mitosis can contribute to tumorigenesis 
via the generation of aneuploidy.

One unresolved question concerns the extent to which ab-
normal mitosis and DNA damage, the two key promoters of ge-
nomic instability, are linked. Although it has been known for 
some time that DNA damage adversely affects the efficacy of 
mitosis, the reciprocal possibility—that abnormal mitosis pro-
motes DNA damage—has been largely overlooked in studies of 
cancer cell biology. However, several recent reports demon-
strate that abnormal mitosis alone is sufficient to generate DNA 
damage. Thus, impaired mitosis may negatively effect genome 
stability in two ways: not only by causing genome destabilizing 
whole chromosome aneuploidy, but also by promoting the ac-
quisition of potentially growth-promoting mutations.

The damaging effects of prolonged mitosis
In proliferating cells, the phases of the cell cycle exist to accom-
plish one specific task: to accurately replicate all chromosomes 

Cellular defects that impair the fidelity of mitosis promote 
chromosome missegregation and aneuploidy. Increasing 
evidence reveals that errors in mitosis can also promote 
the direct and indirect acquisition of DNA damage and 
chromosome breaks. Consequently, deregulated cell divi-
sion can devastate the integrity of the normal genome and 
unleash a variety of oncogenic stimuli that may promote 
transformation. Recent work has shed light on the mecha-
nisms that link abnormal mitosis with the development of 
DNA damage, how cells respond to such affronts, and the 
potential impact on tumorigenesis.

Linking abnormal mitosis to the acquisition  
of DNA damage

Neil J. Ganem and David Pellman

Howard Hughes Medical Institute, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children’s Hospital, Department of Cell Biology, Harvard Medical 
School, Boston, MA 02115

© 2012 Ganem and Pellman  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the pub-
lication date (see http://www.rupress.org/terms). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y



JCB • VOLUME 199 • NUMBER 6 • 2012� 872

recently become apparent. Orth et al. (2012) observed that cells 
arrested in mitosis for an extended period of time (16 h) 
showed outer mitochondrial membrane permeabilization and 
subtle leakage of cytochrome c concomitant with the emergence 
of DNA damage (Orth et al., 2012). Release of cytochrome c 
into the cytosol is a well-known initiator of apoptosis, and acti-
vates a family of cysteine proteases termed caspases (the “exe-
cutioners” of the cell). Among the numerous protein targets that 
caspases cleave is ICAD, an inhibitor of the DNase enzyme 
CAD (Enari et al., 1998; Sakahira et al., 1998). Cleaved ICAD 
thus frees CAD, which in turn proceeds to cleave chromosomal 
DNA, once presumed to be a “point of no return” for cells 
(Enari et al., 1998; Sakahira et al., 1998). However, the authors 
propose that the low levels of cytochrome c release induced by 
prolonged mitosis may trigger only a partial apoptotic re-
sponse with limited CAD DNase activation and, instead of 
shearing chromosomes entirely, simply induce limited DNA 
breaks (Fig. 1; Orth et al., 2012). This view is supported by the 
finding that addition of caspase inhibitors significantly reduces 
the occurrence of -H2AX and mitotic cell death during pro-
longed mitosis, as does suppression of CAD DNase activity by 
expression of a noncleavable version of ICAD (Orth et al., 
2012). Destruction of another caspase target protein during mi-
tosis, Cap-H, also facilitates chromosomal cleavage by CAD. 
Cap-H is a member of the condensin I complex, which main-
tains chromosome structure during mitosis. Cleavage of Cap-H 
by partially activated caspases abolishes the condensin I com-
plex, disrupts the integrity of compacted mitotic chromosomes, 
and exposes highly accessible decondensed DNA loops to CAD 
nuclease activity (Lai et al., 2011). This cleavage of Cap-H by 
caspases is critical for the induction of DNA breaks: expression 
of a caspase-resistant form of Cap-H protects mitotic chromo-
some structure during prolonged mitosis, and prevents chromo-
somal fragmentation (Lai et al., 2011).

Why cells that undergo protracted mitosis exhibit mito-
chondrial outer membrane permeabilization and cytochrome c 
release remains unknown. At least part of the explanation comes 
from the fact that anti-apoptotic proteins of the BCL-2 family, 
such as MCL1 and BCLxl, which antagonize mitochondrial 
outer membrane permeabilization and cytochrome c release, are 
gradually lost during prolonged mitosis. Several studies have 
now identified mitotically active E3 ligases, such as APCCdc20 
and SCFFBW7, which target MCL1 for proteasomal destruction 
(Harley et al., 2010; Sánchez-Pérez et al., 2010; Inuzuka et al., 
2011; Millman and Pagano, 2011). Consequently, prolonged 
mitosis may eventually reduce MCL1 protein to levels that are 
insufficient to completely suppress mitochondrial permeability. 
Collectively, these data reinforce the view that cytochrome c 
release and caspase activation do not necessarily ignite an am-
plifiable “all or nothing” cellular termination program (Goldstein 
et al., 2000; Vaughan et al., 2002; Abraham and Shaham, 2004; 
Khodjakov et al., 2004; Larsen et al., 2010); rather, under cer-
tain conditions such as prolonged mitosis, subtle activation of 
components of the apoptotic machinery can lead to DNA dam-
age without a requisite death sentence.

These data also demonstrate that a number of complex fac-
tors regulate the susceptibility of cells to acquiring DNA damage 

so that they can be efficiently and equally partitioned into two 
daughter cells during mitosis. Numerous checkpoints have 
evolved to ensure that mitosis only proceeds when growth con-
ditions are ideal and chromosomes are efficiently replicated and 
free of damage. This level of quality control takes time, and, 
generally speaking, proliferating mammalian somatic cells re-
quire 12–30 h to properly prepare for division. By contrast, mi-
tosis itself is relatively rapid, typically lasting only 20–60 min, 
depending on chromosome number and the efficiency of spin-
dle assembly (Yang et al., 2008). It may seem surprising that 
cells are programed to move so swiftly through mitosis given its 
importance and the amount of time and energy invested in pre-
paring for the event. This begs the question: Why the rush?

Ironically, the simplest explanation is that mitosis is both 
destructive and stressful for the dividing cell, and is therefore a 
process best finished quickly. During mitosis, among other things, 
the nuclear envelope is torn apart (Gerace et al., 1978), the Golgi 
and ER membrane systems undergo dramatic reorganization 
(Hetzer, 2010; Robbins and Gonatas, 1964), vesicle trafficking 
ceases (Sager et al., 1984), chromosomes condense and transcrip-
tion is disabled (Taylor, 1960; Prescott and Bender, 1962), 
translation is slowed (Prescott and Bender, 1962; Bonneau and 
Sonenberg, 1987), and both the actin and microtubule cytoskele-
tons are reshaped to facilitate cell rounding and assembly of the 
bipolar mitotic spindle (Saxton et al., 1984; Kunda and Baum, 
2009). Such dramatic perturbations to the normal cellular archi-
tecture during mitosis cannot be tolerated indefinitely, and we are 
just beginning to understand the consequences of extending such 
an abnormal state: the infrastructure of mitotic chromosomes, 
slowly but surely, begins to break down during prolonged mito-
sis, ultimately giving rise to DNA breaks.

The first hints that prolonged mitotic arrest might promote 
DNA damage came from early studies that used microtubule poi-
sons (e.g., nocodazole, colchicine) to arrest cells in mitosis. Such 
drug-treated cells were unable to satisfy the spindle assembly 
checkpoint (SAC) and were maintained in mitotic arrest until 
they either died in mitosis or “slipped” back into interphase with-
out anaphase or cytokinesis, becoming tetraploid (Rieder and 
Palazzo, 1992; Lanni and Jacks, 1998; Rieder and Maiato, 2004; 
Quignon et al., 2007). These tetraploid cells arrested in the subse-
quent G1 phase in a p53-dependent manner that was shown to be 
a result of DNA damage, though whether the damage occurred 
during the prolonged mitosis or was a consequence of slippage 
was unclear (Lanni and Jacks, 1998; Rieder and Maiato, 2004; 
Quignon et al., 2007). More robust evidence that DNA damage 
arises during mitosis quickly followed, after both drug as well as 
genetic treatments were used to prolong mitosis in a variety of 
cell lines. DNA damage, as identified by detection of the phos-
phorylated histone variant H2AX (-H2AX; Rogakou et al., 
1998), was observed to subtly emerge beginning 6 h after 
mitotic arrest and gradually accumulate with sustained mitosis 
(Dalton et al., 2007). Many groups, using alternative methods to 
prolong mitosis in a wide variety of cell types, have confirmed 
the generality of this finding (Uetake and Sluder, 2010; Crasta 
et al., 2012; Hayashi et al., 2012; Orth et al., 2012).

Why prolonged mitotic arrest causes DNA damage re-
mains an open area of investigation, but some mechanisms have 
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is due to enhanced Aurora B activity during prolonged mitosis, 
perhaps because of a gradual loss of the phosphatase activity 
that opposes Aurora B (Hayashi et al., 2012). Indeed, declining 
steady-state levels of unstable proteins may be a major contrib-
uting factor to the accumulation of DNA damage during pro-
longed mitosis, as mitotic cells are transcriptionally silenced 
and do not demonstrate cap-dependent translation (only IRES-
mediated translation of a limited number of proteins persists; 
Bonneau and Sonenberg, 1987). It would be interesting to know 
if reducing enzymes (e.g., catalases, peroxidases) are one such 
family of limiting factors. Reducing enzymes convert DNA-
damaging reactive oxygen species (ROS), which are produced 
by mitochondria during normal aerobic respiration, into by-
products that are harmless to the cell. It is tempting to speculate 
that reducing enzymes may diminish during prolonged mitosis 
to levels that can no longer adequately neutralize ROS, thus en-
abling an attack on DNA.

Although a comprehensive understanding of the mecha-
nisms underlying DNA damage remains to be elucidated, pro-
longed mitosis clearly poses a substantial threat to the genomic 
stability and viability of daughter cells. Supporting this notion 
is the remarkable finding that cells may actually have evolved a 
“clock” to time the duration of mitosis, thereby furnishing a 
mechanism to identify potentially dangerous cells that took too 
long to complete division. If mitosis takes even a little longer to 
complete than normal (for instance, lasting longer than 1.5 h) 
then the resulting daughter cells activate a durable p53-dependent 
G1 arrest that culls them from the proliferating population 
(Uetake and Sluder, 2010).

This observation raises several questions regarding the 
trigger for p53-dependent G1 arrest in daughter cells that are 
born from just slightly prolonged mitosis. The most likely culprit, 

during prolonged mitosis, and suggest that some cells may be 
more prone to such damage than others. As an example, several 
studies have demonstrated that efficient loading of components 
of the condensin II complex to chromosomes requires functional 
pRb, and that pRb loss, or mutations in pRb that abolish its ability 
to efficiently load condensin II, lead to chromosome condensa-
tion and mitotic defects (Longworth et al., 2008; Manning et al., 
2010). It would be interesting to examine whether the less com-
pact chromosomes that lack condensin II are more susceptible to 
caspase-induced nuclease activity and DNA breaks during the 
abnormally prolonged mitosis. Perhaps an increased susceptibil-
ity to DNA breaks during mitosis may help explain the finding 
that pRb mutations, which abolish condensin II loading without 
disrupting the normal G1–S transition, promote tumor formation 
and aggressiveness in mouse models (Coschi et al., 2010).

Additional pathways, which are independent of partial 
caspase activation, also promote DNA damage during pro-
longed mitosis. This is best illustrated by the observation that 
caspase inhibitors are not always sufficient to prevent the onset 
of DNA damage during abnormal cell division (Dalton et al., 
2007). One recent study observed that a large portion of DNA 
damage that stems from prolonged mitosis initially appears at 
telomeres, suggesting that telomere-capping proteins, which act 
to suppress the DNA damage response at the truncated ends 
of linear chromosomes, might become functionally inactivated 
(Hayashi et al., 2012). Indeed, TRF2, one such capping compo-
nent, has been shown to leave the ends of telomeres during pro-
longed mitosis, even though its overall levels remain unaltered 
(Fig. 1). How this comes about is unclear, but it has been 
postulated that Aurora B kinase directly or indirectly plays a 
functional role in regulating the delocalization of TRF2 from 
telomere ends. One possibility is that TRF2 loss from telomeres 

Figure 1.  Prolonged mitosis gives rise to 
DNA damage through multiple mechanisms. 
Prolonged mitosis leads to depletion of many 
proteins, including anti-apoptotic proteins 
such as MCL1. This induces a partial cas-
pase activation and destruction of ICAD and 
CAP-H, which frees the DNase CAD to cleave 
decondensed loops on chromosomal DNA. 
In addition, the telomere-protecting protein 
TRF2 loses its telomeric localization, expos-
ing the linear ends of chromosomes that are 
recognized as DSBs. Finally, sister chromatid 
cohesion is gradually lost during prolonged 
mitosis, and this “cohesion fatigue” promotes 
premature sister chromatid separation and 
merotelic attachment. The forces generated 
by merotelic attachment at kinetochores may 
combine with preexisting DNA damage at the 
underlying centromeres to generate arm-level 
chromosome breaks, an anomaly commonly 
observed in human cancers.
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Merotelic attachments are a specific type of kinetochore–
microtubule attachment error that occurs when a single kineto-
chore from one chromosome is attached to microtubules from 
more than one spindle pole (Salmon et al., 2005; Cimini, 2008; 
Gregan et al., 2011). This type of attachment error is particularly 
dangerous because it satisfies the spindle assembly checkpoint 
and permits anaphase, even if left uncorrected (Cimini et al., 
2001). As a consequence, during anaphase the merotelically at-
tached chromosome is simultaneously pulled toward opposite 
poles via its lone kinetochore. In most cases, one spindle pole 
has more microtubules attached to the kinetochore than the 
other, causing segregation of the offending chromosome to one 
daughter cell, albeit to the same one as its sister chromosome at 
some low frequency (Cimini et al., 2001, 2002, 2003, 2004; 
Thompson and Compton, 2011). Occasionally, however, both 
poles pull the single kinetochore with equal strength, thus stall-
ing the progression of the chromosome to one daughter or an-
other. This gives rise to what is referred to as an anaphase 
“lagging chromosome” (Fig. 2 A), not to be confused with bridg-
ing chromosomes, which are formed by distinct mechanisms 
(discussed in the next section). Lagging chromosomes can end 
up in either daughter cell, depending on where the cytokinetic 
furrow ingresses, though they most frequently segregate to the 
correct cell, which is the cell opposite to where the sister chro-
mosome segregated (Cimini et al., 2004; Thompson and Compton, 
2011). Nevertheless, anaphase lagging chromosomes often lag 
so severely behind the other chromosomes that upon telophase 
they form their own nuclear envelope, creating a micronucleus, 
which has its own repercussions (discussed later).

Anaphase lagging chromosomes experience a microtubule-
generated pulling force that is strong enough to lead to the dra-
matic physical stretching and deformation of their kinetochores 
and underlying centromeric DNA (Cimini et al., 2001, 2004), 
though whether this force is capable of physically breaking the 
DNA at the centromere remains unresolved. Consideration of the 
force required to break the phosphodiester backbone of naked 
DNA makes the idea somewhat plausible: the estimated force 
required to rupture a single covalent bond (2 nN; Grandbois 

DNA damage, does not appear to be responsible for this phe-
nomenon, as no obvious DNA damage can be detected in cells 
that are arrested in mitosis for such relatively short periods of 
time, consistent with previous studies which show that -H2AX 
staining is detectable starting only after 5–16 h of mitosis de-
pending on cell type (Dalton et al., 2007; Orth et al., 2012).  
Alternatively, it has been postulated that p53 gradually accumu-
lates during prolonged mitosis, enforcing subsequent arrest in 
G1 (Blagosklonny, 2006); however, this has not yet been exper-
imentally observed (Minn et al., 1996; Orth et al., 2012). Nev-
ertheless, whatever the stress from prolonged mitosis may be, it 
appears to persist, or perhaps even permanently mark cells as 
being defective. This was demonstrated in an elegant experi-
ment in which daughter cells generated from a slightly pro-
longed mitosis, which would normally arrest, were treated 
transiently with a p38 inhibitor to allow them to bypass the p53-
induced arrest, proceed through a second cell cycle, and reenter 
mitosis. Remarkably, despite the fact that the second mitosis 
completed with normal timing, the daughter cells once again 
rearrested in G1 (Uetake and Sluder, 2010). This confirms that 
when it comes to prolonged mitosis, nontransformed cells don’t 
take any chances: strong anti-proliferative mechanisms prevent 
the progeny of these abnormal cells, and whatever genetic 
anomalies they may harbor, from further division.

Effects of merotely on genome stability
In addition to prolonged mitosis, other aspects of abnormal cell 
division may play significant roles in generating DNA damage. 
Recent sequencing efforts have revealed that tumor cells are 
highly enriched in chromosome whole-arm amplifications, in-
dicative of chromosome breaks at centromeres, yet the mecha-
nisms through which these breaks occur remain completely 
unresolved (Beroukhim et al., 2010). One distinct possibility is 
that DNA replication and/or repair mechanisms are inefficient 
through the highly repetitive -satellite regions of centromeres, 
which predisposes to breakage. However, it is also plausible 
that such shearing events occur during abnormal mitosis as a 
consequence of merotelic attachments.

Figure 2.  Anaphase lagging chromosomes versus chro-
mosome bridges. (A) Anaphase lagging chromosomes 
(“Lagging”, white arrow) are identified as single, kinetochore-
positive chromosomes that lag between the two masses of 
segregating chromosomes during anaphase. Lagging chro-
mosomes are commonly caused by merotelic attachments. 
By contrast, pathological chromosome bridges (“Bridging”, 
white arrow) completely span the segregating masses of 
chromosomes during anaphase. Pathological bridges are 
caused by condensation and cohesion defects, or by dicen-
tric chromosomes being pulled to opposite poles, and are 
readily visualized with DNA-intercalating dyes (kinetochores, 
red; chromosomes stained with the DNA intercalating dye 
Hoechst, green). Images reproduced from Ganem et al. 
(2009). (B) Ultra-fine chromosome bridges (white arrow) re-
sult from inefficient decatenation of sister chromosomes and 
cannot be detected using DNA dyes, requiring instead detec-
tion with specific protein markers (PICH, red; chromosomes 
stained with the DNA intercalating dye Hoechst, white). Bar, 
10 µm. Images courtesy of Taruho Kuroda (Harvard Medical 
School, Boston, MA).
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keeping them in close proximity to facilitate repair (Chen et al., 
2001; Hopfner et al., 2002). This raises the possibility that the 
forces generated by merotelic attachment are sufficient to over-
come the tethering forces applied by the MRN complex on bro-
ken chromosomes, thus making preexisting DSBs located at or 
near centromeres significantly more susceptible to being com-
pletely torn apart by strong microtubule-generated forces.

The acquisition of DNA damage  
during cytokinesis
Cells experiencing abnormal mitosis that progress from pro-
metaphase to anaphase without acquiring DNA lesions are not 
“out of the woods,” especially if they encounter problems in  
efficiently segregating their chromosomes. Awaiting cells after 
anaphase is cytokinesis, where a contracting actin-myosin ring, 
which generates sufficient force to cleave one cell into two, 
looms. A number of studies in budding and fission yeast, as well 
as in plants, have established that failure to clear chromosomes 
from the central spindle and out of the oncoming path of the cy-
tokinetic ring and enclosing cell wall results in chromosomal 
cleavage, which has dire consequences for cells (McClintock, 
1941; Hirano et al., 1986; Baxter and Diffley, 2008). Conse-
quently, in yeast a quality control mechanism termed the “No-
Cut” pathway has been proposed that delays cytokinesis when 
chromatin fails to segregate out of the spindle midzone—this 
mechanism buys additional time for resolving the defect (Norden 
et al., 2006; Mendoza et al., 2009).

In contrast to the findings in yeast and plants, the conse-
quences of having chromatin trapped within the cleavage plane 
during the ingression of the cytokinetic furrow is much more 
variable in mammals, and can give rise to several distinct fates 
including cleavage furrow regression, abscission delay, and/or 
chromatin cleavage (Fig. 3 A). Cleavage furrow regression is 
a well-documented consequence of having chromatin trapped 
under the furrow during mammalian cytokinesis (Mullins and 
Biesele, 1977), and in contrast to the obligatory chromosome 
breakage experienced by yeast, frequently occurs without any 
visible signs of DNA damage (Steigemann et al., 2009). This 
may be due to the fact that mammalian cytokinesis, unlike yeast 
and plants, does not require potentially damaging cell wall de-
position after actin-myosin ring contractility. However, induc-
ing tetraploidy to prevent chromosomal breaks may not be a 
positive long-term strategy for cells: tetraploid cells possess 
inherent stresses that typically limit their long-term prolifer-
ation (Andreassen et al., 2001; Ganem and Pellman, 2007; 
Krzywicka-Racka and Sluder, 2011), but they also have an in-
creased capacity to promote transformed growth (Duelli et al., 
2005; Fujiwara et al., 2005; Ganem et al., 2007; Davoli and de 
Lange, 2011, 2012).

Alternatively, it has been reported that an Aurora B–
dependent mechanism similar to the yeast NoCut pathway exists 
in mammalian cells to stabilize the cytokinetic bridge after furrow 
ingression and prevent abscission in the presence of trapped 
chromatin (Steigemann et al., 2009). This pathway potentially 
provides time for cells to resolve segregation errors during the 
subsequent interphase while preventing the deleterious effects 
of tetraploidy. Remarkably, despite the fact that the daughters 

et al., 1999) is in the ballpark of a generous estimate of force pro-
duced by a mature kinetochore fiber containing 20 microtu-
bules (0.2–1.5 nN; Alexander and Rieder, 1991; Nicklas, 1988). 
However, arguing against this idea is the fact that breaking 
highly condensed chromosomal DNA requires a force (100 nN) 
that is 2–3 orders of magnitude stronger than what is produced 
by a kinetochore fiber (Houchmandzadeh et al., 1997). This is due 
in part to the high elasticity of chromosomes, which can return to 
their normal shape after being stretched more than 10 times, and 
the force-diffusing pliability of kinetochores (Houchmandzadeh 
et al., 1997; Dong et al., 2007; Loncarek et al., 2007; Bloom, 
2008). Practically, it also seems illogical that microtubule-
generated forces that evolved to push and pull chromosomes in 
order to facilitate congression and segregation during mitosis 
would exhibit forces anywhere near strong enough to actually 
break the chromosomes. Supporting this view, several groups 
have shown that experimentally induced merotelically attached 
lagging chromosomes at early anaphase do not display any ob-
vious signs of DNA damage (Thompson and Compton, 2010; 
Uetake and Sluder, 2010; Crasta et al., 2012).

Nevertheless, the possibility that certain perturbations 
may predispose cells to centromere breakage in conjunction 
with merotely during mitosis cannot be discounted. Evidence 
for one such situation comes from observations on a mouse cell 
line that lacks the Dido gene product. Dido is a centrosome- 
localized protein whose loss gives rise to multiple mitotic defects 
including centrosome amplification and lagging chromosomes 
(Trachana et al., 2007). Dido-null cells reportedly exhibit  
-H2AX foci adjacent to merotelically attached kinetochores, 
which suggests that forces from merotelic attachments may 
generate sufficient force to break centromeric DNA, at least in 
certain genetic contexts (Guerrero et al., 2010).

That cells with preexisting DNA damage are more suscep-
tible to the pulling forces generated by merotelic attachment 
should also be considered. For example, merotelic attachment 
may unravel DNA from single-strand nicks, thus promoting con-
version to a double-stranded break (DSB). If so, then conditions 
that promote both DNA damage and merotely might combine to 
generate breaks specifically at centromeres. One such condition 
arises during prolonged mitosis: as detailed extensively already, 
DNA damage accumulates during abnormally protracted mitosis, 
but occurring concurrently is the gradual loss of cohesion between 
sister centromeres, a phenomenon termed cohesion fatigue (Daum 
et al., 2011). A consequence of cohesion fatigue is the disassocia-
tion of sister chromatids, which promotes merotelic attachment 
(Fig. 1). Thus, it is tempting to speculate that subtle, perhaps  
imperceptible, DNA damage caused by prolonged mitosis (e.g., 
single nicks not identified by -H2AX localization) may synergize 
with excess merotely generated after cohesion fatigue or other 
mitotic defects to promote chromosomes breaks at centromeres.

Rather than breaking chromosomes directly, merotelic at-
tachments could also facilitate the physical separation of chro-
mosomes that already possess breaks at or near centromeres. 
For example, the MRN complex (Mre11–Rad50–Nbs1), which 
is a primary responder to DNA DSBs, detects and binds DSBs 
during mitosis. Mre11 is a component of the MRN complex that 
is believed to physically tether broken ends of chromosomes, 
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poles during anaphase (Figs. 2 A and 3 A). Condensation and co-
hesion defects also promote these bridges, which are readily iden-
tifiable with common DNA intercalating dyes (Hauf et al., 2001; 
Hetzer, 2010). Ultra-fine chromosome bridges (UFBs), by 
contrast, are so subtle as to be virtually invisible using standard 
chromosome staining protocols; they arise from incomplete 
decatenation of entangled DNA, frequently at centromeres 
(Chan and Hickson, 2011), and can only be detected by visual-
izing protein components such as the nuclear membrane pro-
tein LAP2 or the helicases PICH and BLM that specifically 
localize to these bridges (Fig. 2 B; Baumann et al., 2007; Chan 
et al., 2007; Ke et al., 2011). Unlike pathological bridges, 
UFBs may play an important structural role in normal mitosis 
by physically linking sister centromeres during early anaphase 
in order to maintain tension and prevent SAC reactivation, then 
resolved in a regulated manner later in anaphase to prevent 
bridging in the spindle midzone (Baumann et al., 2007; Chan 
and Hickson, 2011). However, such resolution is often deregu-
lated in cancer cells and can give rise to numerous stable UFBs 
that stem from both centromeres as well as from chromosome 
arms, after mitosis (Chan et al., 2009). Both pathological and 
ultra-fine chromosome bridges physically span the entire mid-
zone, and cannot avoid the cytokinetic ring: this makes them 
fundamentally different from anaphase lagging chromosomes, 
which are capable of “sidestepping” the ingressing furrow. 
Bridged chromosomes are therefore significantly more likely 
to undergo cytokinesis-induced damage, or cause furrow re-
gression, though anaphase lagging chromosomes are not im-
mune (Janssen et al., 2011).

in this condition remain physically linked by the bridging chroma-
tin, they behave as two discrete entities with independent cell 
cycle dynamics (Steigemann et al., 2009). However, virtually 
nothing is known about how these cells mechanistically resolve 
the stabilized chromatin that links them, or whether this can be 
accomplished without chromosomal cutting. Furthermore, chro-
mosome bridges can persist throughout the ensuing cell cycle, 
and even stretch extensively as cells move far apart (Fig. 3 B), 
raising the possibility that no specific mechanisms exist to ac-
curately resolve such bridges once they have been stabilized.

Finally, imaging of mammalian cells confirms that chro-
matin trapped in the spindle midzone does occasionally break 
during cytokinesis in mammalian cells (Hoffelder et al., 2004; 
Samoshkin et al., 2009; Janssen et al., 2011), producing recom-
binagenic fragments that can generate chromosome transloca-
tions in the next cell cycle (Janssen et al., 2011). Inhibition of 
cytokinetic ring furrowing can rescue such chromatin from ac-
quiring DNA damage, supporting the idea that cytokinesis plays 
a direct role in breaking chromosomes (Janssen et al., 2011).

What remains entirely unclear are the molecular under-
pinnings dictating whether or not the trapped chromatin will 
break or cause furrow regression. A potential source of vari-
ability certainly derives from the nature of the trapped chroma-
tin, which can be in the form of a pathological chromosome 
bridge, an ultra-fine chromosome bridge, or an anaphase lag-
ging chromosome. Pathological chromosome bridges frequently 
result from dicentric chromosomes, which originate from inap-
propriately repaired DSBs or from fusions of critically short-
ened telomeres regions, which are then pulled to opposing 

Figure 3.  Consequences of chromosome bridges. (A) Chromosome bridges can promote cytokinetic furrow regression, chromosomal cleavage, or ab-
scission failure. However, the factors governing which of these outcomes will occur remain entirely unknown. One possibility is that previously nicked or 
otherwise damaged chromosomes may be more susceptible to cleavage, whereas undamaged whole chromosomes may be more likely to promote furrow 
regression or abscission delays. (B) Chromosome bridges (white arrow) that are not cleaved or resolved during cytokinesis persist well into the following 
cell cycle, even stretching extensively as cells move apart (DNA, white; LAP2, red). Bars, 10 µm. Images courtesy of Taruho Kuroda (Harvard Medical 
School, Boston, MA).
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Giunta et al. (2010) demonstrate that the second phase of the DNA 
damage response, the recruitment of downstream proteins impor-
tant for chromosome unwinding and subsequent repair (such as 
RNF8, RNF168, 53BP1, and BRCA1), is absent until cells exit 
from mitosis into the subsequent G1 phase. Several groups have 
observed that many of these proteins (e.g., 53BP1), which localize 
to spontaneously arising DNA breaks during interphase, are re-
moved from chromosomes once cells enter mitosis (Jullien et al., 
2002; Nelson et al., 2009; van Vugt et al., 2010).

Other aspects of the DNA damage response are similarly 
impaired during mitosis. For example, the checkpoint kinase 
Chk2, which is a downstream target of ATM, fails to become 
activated during mitosis despite the presence of active ATM. 
This is due at least in part to inhibitory phosphorylation by the 
mitotically active kinase Plk1 (van Vugt et al., 2010). Thus, mi-
totic cells have developed numerous mechanisms to prevent a 
complete DNA damage response during cell division. It has 
been speculated that attempting DNA repair in mitosis would be 
catastrophic, as repair would require disruption of the integrity 
of the highly compacted chromosome structure and perhaps lead 
to a multitude of segregation defects, not to mention potentially 
prolonging stressful mitosis and increasing the risk of acquiring 
even more damage (Giunta and Jackson, 2011). Consequently, it 
has been posited that mitotic cells simply mark sites of DNA 
damage during mitosis so that these sites can be more quickly 
identified and dealt with during the subsequent G1 phase, when 
repair is less threatening (Giunta et al., 2010). This still repre-
sents a risky proposition, as unrepaired chromosome fragments 
may ultimately get missegregated during the next mitosis.

Indirect consequences of abnormal mitosis
In addition to the direct damage to chromosomal integrity, ab-
normal mitosis also exerts indirect effects on the future stability 
of the genome. For example, chromosome missegregation and 
the generation of aneuploidy are common byproducts of abnor-
mal mitosis and may occur without any immediate acquisition 
of DNA damage. Nevertheless, aneuploidy is not without con-
sequences: missegregation of even a single chromosome in 
mammalian cells can lead to the deregulated expression of hun-
dreds, or even thousands, of individual genes, including many 
that are involved in critical processes such as DNA replication 
and repair (Williams et al., 2008; Stingele et al., 2012). Conse-
quently, it has been observed that spontaneously arising non-
transformed aneuploid cells are prone to p53-mediated cell 
cycle arrest (Thompson and Compton, 2010). However, cells 
capable of escaping this arrest are subject to increased mutation 
rates, recombination frequencies, and further chromosome 
missegregation (Thompson and Compton, 2010; Sheltzer et al., 
2011), supporting the long-standing belief that aneuploidy im-
parts a “mutator phenotype” (Duesberg et al., 1998; Holliday, 
1989). Thus, missegregation of a single chromosome caused by 
abnormal mitosis has the capacity to set in motion a self-propa-
gating storm of genomic instability.

Another outcome of abnormal mitosis is the generation of 
micronuclei, which form when anaphase lagging chromosomes 
reassemble nuclear envelopes independent from the spatially 
separated primary nucleus during telophase. Micronuclei are 

Whether or not the cytokinetic furrow cleaves the bridged 
chromosomes may also reflect whether or not the trapped DNA 
possesses any additional damage. Bridged chromosomes, weak-
ened by DNA lesions, may be prone to breakage by the com-
bined forces of the anaphase spindle and the cytokinetic ring, 
whereas undamaged chromosomes may be more resistant, and 
promote furrow regression. Chromosome bridges may also 
avoid breakage by finding strength in their numbers: because of 
their physical properties, chromosome bridges align parallel to 
the anaphase spindle during cytokinesis, and if more than one 
chromosome bridge exists in a given cell then the pinching 
cleavage furrow stacks the separate bridges upon one another. 
This raises the possibility that a single bridging chromosome is 
more susceptible to breakage than multiple bridged chromo-
somes, which may together form a chromatin bundle that is bet-
ter able to fend off the ingressing furrow.

Imaging studies document that when breakage of bridging 
chromosomes occurs during cytokinesis, it frequently does so 
adjacent to centromeres (Hoffelder et al., 2004). Although this 
may be a direct consequence of centromeres experiencing more 
pulling forces at anaphase, it is also tempting to speculate that 
cleavage may be the consequence of a more biochemical re
action, such as nuclease-mediated chromosomal cutting. In this 
light, it is interesting to note that topoisomerase-II, an enzyme 
important for decatenating sister chromatids, localizes to cen-
tromeres during mitosis (Spence et al., 2007; Wang et al., 2008, 
2010). This raises the possibility that centromere-localized 
topoisomerase-II, or perhaps another cellular nuclease, may 
play a key role in resolving chromosome bridges by inducing 
breakage at centromeres.

The cellular response to DNA damage 
acquired during mitosis
Cells rapidly respond to DNA damage acquired during inter-
phase by engaging signaling pathways that disable cell cycle 
progression and promote DNA repair (Ciccia and Elledge, 
2010). In contrast, mitotic cells do not activate any checkpoints 
in response to DNA damage, per se, as studies using laser irra-
diation or drug treatments to induce minor DNA damage during 
mitosis show no delays in mitotic progression despite the 
presence of obvious DNA fragments (Rieder and Cole, 1998). 
Robust DNA damage can delay mitotic progression, but this 
only happens when massive damage occurs right at centromeric 
DNA and alters kinetochore function, thus preventing normal 
spindle assembly checkpoint silencing (Mikhailov et al., 2002; 
Nitta et al., 2004; Dotiwala et al., 2010).

The discovery that no DNA damage checkpoint exists to 
delay mitotic progression led to speculation that cells might be 
“blind” to mitotic chromosomal damage and might fail to mount 
any sort of response, let alone try and repair the lesions. How-
ever, the mere fact that -H2AX appears at sites of DNA dam-
age in mitotic cells demonstrates the existence of at least a partial 
response, as -H2AX requires phosphorylation by the kinase 
ATM, which is recruited to sites of DNA damage by the DNA 
break-sensing MRN complex (Ciccia and Elledge, 2010; Giunta 
and Jackson, 2011). Although it is clear that mitotic cells are 
capable of mounting such a primary DNA damage response, 
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factors that disrupt mitosis may play a more significant role in 
generating tumorigenesis than previously appreciated.

Nevertheless, it is interesting to consider whether exploit-
ing the consequences of abnormal mitosis may have therapeutic 
value, especially given that such events preferentially occur in 
tumor, and not normal, cells. As an example, two common 
byproducts of abnormal mitosis—extra centrosomes and an-
euploidy—have been identified as potentially cancer-specific 
drug targets (Rebacz et al., 2007; Kwon et al., 2008; Leber et al., 
2010; Tang et al., 2011; Raab et al., 2012). Other defects arising 
from chaotic mitosis, such as tetraploidy, micronuclei, and bridg-
ing chromosomes, also represent potential therapeutic targets.

Moreover, a detailed understanding of how cells respond 
to DNA damage during mitosis may also help to improve exist-
ing anti-mitotic therapies that target rapidly dividing mitotic 
cells (e.g., Taxol). Although this class of drugs has proven ben-
eficial, and often even curative, many cancers remain refrac-
tory. This is due in large part to the fact that cells are capable of 
escaping mitosis through slippage before a full apoptotic re-
sponse can be achieved (Gascoigne and Taylor, 2008). Conse-
quently, it has recently been proposed that targeting mitotic 
exit, and thus forcing cells to persist in a state of stressful and 
damaging mitosis, may have a stronger therapeutic effect, espe-
cially in conjunction with treatments that potentiate the apop-
totic response (Huang et al., 2009; Rieder and Medema, 2009; 
Zeng et al., 2010; Shi et al., 2011; Tan et al., 2011).

In sum, abnormal mitosis disrupts genome stability through 
a variety of mechanisms and has the capacity to empower 
cells with growth advantages that promote the development 
of cancer. However, abnormal mitosis also imparts specific 
vulnerabilities. Identifying these weaknesses, as well as novel 
ways to exploit them, remains a primary objective of future 
cell biological research.
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