44 research outputs found

    SYRA3 COST Action – Microbeam radiation therapy: Roots and prospects

    Get PDF
    AbstractMicrobeam radiation therapy (MRT) is an irradiation modality for therapeutic purposes which uses arrays of collimated quasi parallel microbeams, each up to 100 μm wide, to deliver high radiation doses. Several studies have reported the extraordinary tolerance of normal tissues to MRT irradiation; conversely, MRT has been shown to be highly efficient on tumor growth control. The original and most widely developed application of MRT, yet in the preclinical phase, consists in using spatially fractionated X-ray beams issued from a synchrotron radiation source in the treatment of brain tumors. More recently, MRT has been tested in successful pioneering assays to reduce or interrupt seizures in preclinical models of epilepsy. The MRT concept has also been extended to proton therapy. The development of MRT towards its clinical implementation is presently driven by an EU-supported consortium of laboratories from 16 countries within the COST Action TD1205 (SYRA3). The results of the first SYRA3 workshop on “Radiation Therapy with Synchrotron Radiation: Achievements and Challenges” held in Krakow (Poland) during March 25–26 2014 are summarized in this issue with an overview presented in this paper. The papers reflect the multidisciplinary international activities of SYRA3. The topics covered in this focus issue include medical physics aspects, pre-clinical studies, clinical applications, and an industrial perspective; finally an outlook towards future prospects of compact sources and proton microbeams

    Out-of-field dose measurements in radiotherapy – An overview of activity of EURADOS Working Group 9: Radiation protection in medicine

    No full text
    Proceedings of the 17th Solid State Dosimetry Conference (SSD17)International audienceThis review of dosimetry for second cancer risk estimation introduces work carried out by Working Group 9 (WG9: Radiation Protection Dosimetry in Medicine) of the European Radiation Dosimetry Group (EURADOS). The work concentrates on the measurement of out-of-field doses in water phantoms using a variety of dosimeters to measure photon and neutron doses. These include optically stimulated luminescence (OSL), radiophotoluminescence (RPL) and thermoluminescence (TLD) dosimeters for photon dosimetry (together with ion chambers for reference measurements) and track etch and superheated emulsion detectors for neutron measurements. The motivation of WG 9 was to assess undue, non-target patient doses in radiotherapy and the related risks of second malignancy. Improvements in cancer treatment have increased survival times and thus increased incidence of second cancer may be expected in the future. In addition, increased whole body exposure may result from some developments in radiotherapy. This means that radiotherapy clinics will need to simulate their treatments in order to estimate and minimise doses to healthy tissues and organs. The proposed work is designed to generate a robust dataset of out-of-field dose measurements which can be used for the development and validation of dose algorithms. Highlights: • Photon dosimeters used (TLD, OSL and RPL) are suitable for out-of-field dosimetry. • Superheated emulsions and Track etch PADC detectors were used for neutron dosimetry. • Neutron detectors used are suitable for out-of-field neutron dosimetry. • Peripheral doses for the same PTV can vary by a factor of 4 for various modalities. • Results revealed that the TPS used regularly underestimated out-of-field dose

    The response of different types of TL lithium fluoride detectors to high-energy mixed radiation fields

    No full text
    Thermoluminescent (TL) dosimeters are routinely used to monitor absorbed doses in many kinds of radiation fields which contain photons, electrons and neutrons. However, TLDs are mainly calibrated to photon sources. We studied the response of TLDs to complex secondary fields arising during the operation of high-energy accelerators (e.g. the Large Hadron Collider (LHC) at CERN). The experiments were conducted at the CERN–EU high-energy reference field facility (CERF). Six different LiF-based TLDs (MTS-N, MTS-7, MTS-6, MCP-N, MCP-7, MCP-6) were exposed to various secondary CERF's fields (both for high and low doses), by placing them at various positions: at the target and concrete top and side positions. For the experiment at the target the corresponding Monte Carlo calculations were also carried out using the FLUKA transport code and compared with experimental results. In addition, alanine dosimeters were used as an independent reference. The results show that TLDs are well suited for monitoring radiation fields around the LHC. Nevertheless, further investigations are required, some of which are in progress

    NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS

    Get PDF
    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO® equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO® phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably

    Gold Nanopeanuts as Prospective Support for Cisplatin in Glioblastoma Nano-Chemo-Radiotherapy

    No full text
    Herein, we propose newly designed and synthesized gold nanopeanuts (Au NPes) as supports for cisplatin (cPt) immobilization, dedicated to combined glioblastoma nano-chemo-radiotherapy. Au NPes offer a large active surface, which can be used for drugs immobilization. Transmission electron microscopy (TEM) revealed that the size of the synthesized Au NPes along the longitudinal axis is ~60 nm, while along the transverse axis ~20 nm. Raman, thermogravimetric analysis (TGA) and differential scanning calorimetry (DCS) measurements showed, that the created nanosystem is stable up to a temperature of 110 °C. MTT assay revealed, that the highest cell mortality was observed for cell lines subjected to nano-chemo-radiotherapy (20–55%). Hence, Au NPes with immobilized cPt (cPt@AuNPes) are a promising nanosystem to improve the therapeutic efficiency of combined nano-chemo-radiotherapy
    corecore