3,769 research outputs found

    Effects of X-ray irradiation on human spermatogenesis

    Get PDF
    Direct cell kill and inhibition of mitosis have been suggested as mechanisms to explain the occurrence of absolute sterility following the irradiation of the testes. In order to obtain information on the existence and dose dependency of the mechanisms for man, a controlled study was initiated. Sixty-four men received a single midorgan dose to both of their testes ranging from 7.5 to 400r (f = .95). It was deduced from resulting pre-sterile period and sterile period data that both cell kill and mitosis halting mechanisms were operating. The maximum observed sterile period was 501 days with eventual recovery observed in each individual where the follow-up was complete. Thus man appears to be highly radiosensitive in regard to temporary sterility but quite radioresistant in regard to permanent sterility

    An automated and versatile ultra-low temperature SQUID magnetometer

    Get PDF
    We present the design and construction of a SQUID-based magnetometer for operation down to temperatures T = 10 mK, while retaining the compatibility with the sample holders typically used in commercial SQUID magnetometers. The system is based on a dc-SQUID coupled to a second-order gradiometer. The sample is placed inside the plastic mixing chamber of a dilution refrigerator and is thermalized directly by the 3He flow. The movement though the pickup coils is obtained by lifting the whole dilution refrigerator insert. A home-developed software provides full automation and an easy user interface.Comment: RevTex, 10 pages, 10 eps figures. High-resolution figures available upon reques

    DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes

    Full text link
    Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to explain the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer

    Type I superconductivity in the Dirac semimetal PdTe2

    Full text link
    The superconductor PdTe2_2 was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the superconducting phase. Surprisingly, we find that PdTe2_2 is a Type I superconductor with Tc=1.64T_c = 1.64 K and a critical field μ0Hc(0)=13.6\mu_0 H_c (0) = 13.6 mT. Our crystals also exhibit the intermediate state as demonstrated by the differential paramagnetic effect. For H>HcH > H_c we observe superconductivity of the surface sheath. This calls for a close examination of superconductivity in PdTe2_2 in view of the presence of topological surface states.Comment: 5 page

    Phonon superradiance and phonon laser effect in nanomagnets

    Full text link
    We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.Comment: 4 PR pages, 1 Figur

    Low-temperature magnetization in geometrically frustrated Tb2Ti2O7

    Full text link
    The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measurements show irreversibilities and glassy behavior below 200 mK. We have performed magnetization and AC susceptibility measurements on four single crystals down to 57 mK. We did not observe a clear plateau in the magnetization as a function of field along the [111] direction, as suggested by the quantum spin ice model. In addition to a freezing around 200 mK, slow dynamics are observed in the AC susceptibility up to 4 K. The overall frequency dependence cannot be described by a canonical spin-glass behavior.Comment: 5 pages, 4 figures + Supp. Mat (3 pages, 5 figures

    The effects of nuclear spins on the quantum relaxation of the magnetization for the molecular nanomagnet Fe_8

    Full text link
    The strong influence of nuclear spins on resonant quantum tunneling in the molecular cluster Fe_8 is demonstrated for the first time by comparing the relaxation rate of the standard Fe_8 sample with two isotopic modified samples: (i) 56_Fe is replaced by 57_Fe, and (ii) a fraction of 1_H is replaced by 2_H. By using a recently developed "hole digging" method, we measured an intrinsic broadening which is driven by the hyperfine fields. Our measurements are in good agreement with numerical hyperfine calculations. For T > 1.5 K, the influence of nuclear spins on the relaxation rate is less important, suggesting that spin-phonon coupling dominates the relaxation rate at higher temperature.Comment: 4 pages, 5 figure

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Theory of magnetic deflagration

    Full text link
    Theory of magnetic deflagration (avalanches) in crystals of molecular magnets has been developed. The phenomenon resembles the burning of a chemical substance, with the Zeeman energy playing the role of the chemical energy. Non-destructive reversible character of magnetic deflagration, as well as the possibility to continuously tune the flammability of the crystal by changing the magnetic field, makes molecular magnets an attractive toy system for a detailed study of the burning process. Besides simplicity, new features, as compared to the chemical burning, include possibility of quantum decay of metastable spin states and strong temperature dependence of the heat capacity and thermal conductivity. We obtain analytical and numerical solutions for criteria of the ignition of magnetic deflagration, and compute the ignition rate and the speed of the developed deflagration front.Comment: 17 Pages, 17 Figure caption
    corecore