10 research outputs found

    A Novel, Ultra-Fast Electrochemical Tool To Study Speciation Of Trace Metals In Aqueous Solution

    Get PDF
    Trace metals play important roles in biological and ecological systems. In biology, trace metals act as catalytic or structural cofactors and regulate biochemical processes. In the environment, natural and anthropogenic sources of trace metals mobilized into natural waters where they can create harmful and persistent pollution. Trace metal chemistry in physiological and environmental systems can fluctuate rapidly which makes it difficult to clearly define trace metalsā€™ roles in these systems with traditional analytical methods. Furthermore, these systems are often chemically harsh and physically delicate (e.g. the brain), factors that add to the challenge of analysis in real systems. Fast scan cyclic voltammetry is explored in the context of rapid, minimally invasive and robust analysis of Cu2+ and Pb2+ in aqueous samples with carbon fiber microelectrodes. Unique Cu2+-specific and Pb2+-specific waveforms were generated with optimized potential windows and scan rates to provide sub-second analysis of these two trace metals. An array of electrochemical and spectroscopic techniques was employed to discover the underlying mechanisms of the ultra fast FSCV response. Adsorption was explained as the fundamental mechanism for the rapid FSCV signal and the thermodynamic properties of adsorption of Cu2+ onto CFMs were evaluated with fast scan controlled adsorption voltammetry in different matrices. In aquatic systems and soils, metals commonly exist in complexed forms with organic and inorganic ligands. It is generally the free, unbound metal that is the most toxic, thus metal speciation is a critical factor when considering metal pollution. Free Cu2+ concentrations and the solution formation constant, Kfs, provide valuable speciation information. We show that FSCV and FSCAV can be utilized to study copper speciation. Mathematical relationships were constructed from experimental data to predict free Cu2+ concentrations and the overall Kfs of a solution with a range of model ligands, representing a range of Cu2+- ligand Kfs expected to be encountered naturally. These findings showcase the power of FSCV as a real-time biocompatible, eco-friendly speciation sensor with excellent sensitivity and a temporal resolution of milliseconds

    Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca2+ Effects on Transport Barriers

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright Ā© American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http:doi.org/10.1021/acs.analchem.9b00796.The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (āˆ¼80%) or entangled (āˆ¼20%) at the high Ca2+ level in contrast to authentic populations of entangled (āˆ¼50%), recessed (āˆ¼25%), and ā€œpluggedā€ (āˆ¼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions

    Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry

    No full text
    Arsenic contamination poses a significant public health risk worldwide, with chronic exposure leading to various health issues. Detecting and monitoring arsenic exposure accurately remains challenging, necessitating the development of sensitive detection methods. In this study, we introduce a novel approach using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes (CFMs) for the electrochemical detection of As3+. Through an in-depth pH study using tris buffer, we optimized the electrochemical parameters for both acidic and basic media. Our sensor demonstrated high selectivity, distinguishing the As3+ signal from those of As5+ and other potential interferents under ambient conditions. We achieved a limit of detection (LOD) of 0.5 Ī¼M (37.46 ppb) and a sensitivity of 2.292 nA/Ī¼M for bare CFMs. Microscopic data confirmed the sensorā€™s stability at lower, physiologically relevant concentrations. Additionally, using our previously reported double-bore CFMs, we simultaneously detected As3+-Cu2+ and As3+-Cd2+ in tris buffer, enhancing the LOD of As3+ to 0.2 Ī¼M (14.98 ppb). To our knowledge, this is the first study to use CFMs for the rapid and selective detection of As3+ via FSCV. Our sensorā€™s ability to distinguish As3+ from As5+ in a physiologically relevant pH environment showcases its potential for future in vivo studies

    Multifunctional Loblolly Pine-Derived Superactivated Hydrochar: Effect of Hydrothermal Carbonization on Hydrogen and Electron Storage with Carbon Dioxide and Dye Removal

    No full text
    Pore modulation via hydrothermal carbonization (HTC) needs investigation due to its crucial effect on surface that influences its multirole utilization of such ultraporous sorbents in applications of energy storage- hydrogen and capacitive- as well as for pollutant abatement- carbon capture and dye removal. Hence, loblolly pine was hydrothermally carbonized followed by KOH activation to synthesize superactivated hydrochars (SAH). The resulting SAHs had specific surface area (SSA) 1462–1703 m2/g, total pore (TPV) and micropore volume (MPV) of 0.62–0.78 cm3/g and 0.33–0.49 cm3/g, respectively. The SAHs exhibit excellent multifunctional performance with remarkably high atmospheric CO2 capture of 145.2 mg/g and high pressure cryogenic H2 storage of 54.9 mg/g. The fabricated supercapacitor displayed substantial specific capacitance value of maximum 47.2 Fg−1 at 1 A g−1 in 6 M KOH and highest MB dye removal of 719.4 mg/g. Higher HTC temperature resulted in increased surface porosity as higher SSA, TPV benefitted H2 storage and MB dye removal while superior MPV favored CO2 capture. Moderate HTC temperature ensured higher mesopore-to-macropore volume ratio favoring electrochemical performance. Isotherm modelling of the adsorbates was compared using models: Langmuir, Freundlich, Langmuir- Freundlich and Temkin

    Real-Time Subsecond Voltammetric Analysis of Pb in Aqueous Environmental Samples

    No full text
    Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements <i>in situ</i>. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pbā€™s limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for <i>in situ</i> analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the methodā€™s sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions

    Fast-Scan Deposition-Stripping Voltammetry at Carbon-Fiber Microelectrodes: Real-Time, Subsecond, Mercury Free Measurements of Copper

    No full text
    Elevated concentrations of hazardous metals in aquatic systems are known to threaten human health. Mobility, bioavailability, and toxicity of metals are controlled by chemical speciation, a dynamic process. Understanding metal behavior is limited by the lack of analytical methods that can provide rapid, sensitive, in situ measurements. While electrochemistry shows promise, it is limited by its temporal resolution and the necessity for Hg modified electrodes. In this letter, we apply fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes for in situ measurements of CuĀ­(II). We present a novel, Hg-free technique that can measure CuĀ­(II) with ppb sensitivity at 100 ms temporal resolution

    Voltammetric Characterization of Cu(II) Complexation in Real-Time

    No full text
    Aqueous metal behavior is strongly regulated by speciation, which in turn is highly dependent on complexation. Trace metal complexation is difficult to characterize in dynamically changing systems due to a lack of analytical methods that can rapidly report free-metal concentrations. In this paper, we perform proof-of-principle experiments that demonstrate the utility of fast-scan cyclic voltammetry (FSCV) for providing speciation information in real-time by characterizing dynamic CuĀ­(II) binding. We study CuĀ­(II) FSCV responses in 3-(<i>N</i>-morpholino)Ā­propanesulfonic acid (MOPS) buffer and characterize the hydrodynamic aspects of our experimental setup (continuously stirred tank reactor). We observe CuĀ­(II) complexation in real-time using five ligands with differing formation constants of CuĀ­(II) complexation. Finally, we utilize geochemical models to fit our real-time experimental CuĀ­(II)-binding curves. Our proof-of-principle experiments show that FSCV is a powerful tool for studying real-time CuĀ­(II) complexation, which is essential speciation information for better interpretation of CuĀ­(II) behavior in dynamically changing systems, such as those encountered in biology or the environment

    In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes

    No full text
    The mechanisms that control extracellular serotonin levels in vivo are not well-defined. This shortcoming makes it very challenging to diagnose and treat the many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic voltammetry (FSCV) can measure rapid serotonin release and reuptake events but cannot report critically important ambient serotonin levels. In this Article, we use fast-scan controlled adsorption voltammetry (FSCAV), to measure serotoninā€™s steady-state, extracellular chemistry. We characterize the ā€œJacksonā€ voltammetric waveform for FSCAV and show highly stable, selective, and sensitive ambient serotonin measurements in vitro. In vivo, we report basal serotonin levels in the CA2 region of the hippocampus as 64.9 Ā± 2.3 nM (<i>n</i> = 15 mice, weighted average Ā± standard error). We electrochemically and pharmacologically verify the selectivity of the serotonin signal. Finally, we develop a statistical model that incorporates the uncertainty in in vivo measurements, in addition to electrode variability, to more critically analyze the time course of pharmacological data. Our novel method is a uniquely powerful analysis tool that can provide deeper insights into the mechanisms that control serotoninā€™s extracellular levels
    corecore