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Abstract

The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and 

cytoplasm of a eukaryotic cell to play important biological and biomedical roles. It, however, is 

not well understood chemically how this biological nanopore selectively and efficiently transports 

various substances including small molecules, proteins, and RNAs by using transport barriers that 

are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with 

charged amino acids. Herein, we employ scanning electrochemical microscopy to image and 

measure the high permeability of NPCs to small redox molecules. The effective medium theory 

demonstrates that the measured permeability is controlled by diffusional translocation of probe 

molecules through water-filled nanopores without steric or electrostatic hindrance from 

hydrophobic or charged regions of transport barriers, respectively. The permeability of NPCs, 

however, is lowered by a low millimolar concentration of Ca2+, which can interact with anionic 

regions of transport barriers to alter their spatial distributions within the nanopore. We employ 

atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed 

(~80%) or entangled (~20%) at the high Ca2+ level in contrast to authentic populations of 

entangled (~50%), recessed (~25%), and “plugged” (~25%) conformations at a physiological Ca2+ 

level of sub-micromolar. We propose a model for synchronized Ca2+ effects on the conformation 

and permeability of NPCs, where transport barriers are viscosified to lower permeability. 

Significantly, this result supports a hypothesis that the functional structure of transport barriers is 

maintained not only by their hydrophobic regions, but also by charged regions.
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Understanding the chemical mechanism of molecular transport through the nuclear pore 

complex (NPC) has been a fascinating theme with great biological and biomedical 

importance.1 The NPC perforates the nuclear envelope (NE) between the nucleus and 

cytoplasm of a eukaryotic cell to solely mediate nucleocytoplasmic transport of various 

substances including electrolytes, small molecules, proteins, and RNAs. The NPC is crucial 

to gene expression regulation2 and gene delivery3 and is linked to many human diseases and 

therapeutics, e.g., cancers,4 genetic disorders,5 and aging.6 However, the chemical 

mechanism of NPC-mediated multimodal transport has not been well understood beyond a 

consensus that transport barriers are constituted by nucleoporins (nups) that are rich in 

repeats of phenylalanine and glycine (FG).7 Problematically, FG repeats are intrinsically 

disordered and heterogeneously dispersed to remain elusive to modern structure 

determination technologies8 and addressable only theoretically.9 Moreover, hydrophilic, 

charged amino acids are also abundant between hydrophobic FG repeats to potentially play 

important structural and functional roles, which have been suggested theoretically10 and 

assessed experimentally only by using isolated FG nups as simple models.11,12

There has been renewed interest in passive transport of small electrolytes through NPCs,13 

which is required to enable the stochastic detection of single macromolecular transport 

events14 as demonstrated recently by using biomimetic NPCs.15 Specifically, a solid-state 

nanopore was modified with FG-rich nups to detect the translocation of single protein 

molecules through the single pore as real-time conductance blockage.15 Biomimetic NPCs 

were impermeable to large proteins (> 40 kDa), which were transported only as complexes 

with transport receptors, i.e., importins,15 as also demonstrated by authentic NPCs1,16 as 

well as hydrogels of isolated FG nups.17,18 Moreover, the conductance of solid-state 

nanopore was largely reduced by modification with isolated FG nups and was quantitatively 

analyzed to conclude that ion transport is completely blocked when the density of FG units 

exceeded 85 mg/mL.15 The lowered conductance of single NPC mimetic was consistent 

with that of single authentic NPCs,14 which were much lower than expected for non-

blocking pores with ~40 nm diameters.14 The threshold density, however, exceeded actual 

concentrations of FG repeats estimated for yeast NPCs experimentally (25–150 mM19 ≈ 2–

25 mg/mL) and theoretically (<~20 mg/mL9).

Herein, we employ scanning electrochemical microscopy20,21 (SECM) to demonstrate that 

the permeability of NPCs to small redox probe molecules is high and controlled by their 
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diffusional translocation through the pores without a blocking effect from transport barriers. 

This result implies that the blockage of small electrolytes through NPC mimetic by surface-

attached FG nups15 is attributed to their non-physiologically high concentrations, thereby 

exemplifying the great significance of a transport study with authentic NPCs. 

Experimentally, we study the nucleoplasm-free NE supported by a microporous membrane 

(Figure 1A) in contrast to our previous SECM studies of isolated intact nuclei,22-24 where 

small proteins were leached from the nucleoplasm to foul a Pt tip. In this study, the high 

permeability of multiple NPCs (~25) is imaged and measured under a 1 μm-diameter Pt tip 

without significant fouling not only for neutral and monocationic ferrocene derivatives, but 

also for redox probes with three positive charges (Figure 1B) to detect no electrostatic effect 

from positively charged residues of amino acids that are intermingled with FG repeats.10 

Moreover, the effective medium theory25-27 ensures that the measured permeability of NPCs 

is consistent with their sizes28 and density.29

Significantly, this study reveals synchronized Ca2+ effects on the permeability and 

conformation of NPCs as determined by SECM and atomic force microscopy (AFM), 

respectively. A low millimolar concentration of Ca2+ interacts with negatively charged 

residues of amino acids between FG repeats to alter spatial distributions of transport barriers 

as demonstrated by immune-electron microscopy.30 We employ SECM to find that the 

permeability of NPCs to small redox probes is lowered by a low millimolar concentration of 

Ca2+, which is attributed to viscosified transport barriers. Complementarily, AFM of 

individual NPCs demonstrates that the recessed conformation of transport barriers becomes 

dominant with a low millimolar concentration of Ca2+31,32 in comparison with entangled 

and plugged conformations33 to represent lower permeability. Our finding of Ca2+-induced 

changes in the permeability and conformation of NPCs indicates that barrier properties of 

FG nups are maintained not only by their hydrophobic or positive regions,10 but also by 

negative ones. Interestingly, nucleocytoplasmic protein transport is also inhibited at high 

intracellular Ca2+ concentrations,34 thereby exemplifying the importance of nuclear calcium 

signaling.35,36

EXPERIMENTAL SECTION

Chemicals and Materials.

The hexafluorophosphate salt of FcTMA+ was prepared by the metathesis of its iodide salt 

(Strem Chemicals, Newburyport, MA) and ammonium hexafluorophosphate (Strem 

Chemicals). Ru(NH3)6Cl3 was obtained also from Strem Chemicals. Fc(CH2OH)2 was 

purchased from Acros Organics (Thermo Fisher Scientific, NJ). Co(phen)3Cl3 was obtained 

from Dyenamo (Stockholm, Sweden). Microporous silicon nitride (Si3N4) membranes with 

3 μm in pore diameter and 200 nm in membrane thickness (NX5100D-H3) were obtained 

from Norcada (Edmonton, Canada). Milli-Q Advantage A10 water purification system 

(EMD Millipore, Billerica, MA) was used to produce UV-treated ultrapure water (18.2 

MΩ·cm) with a TOC value of 2–3 ppb as measured by using an internal online TOC monitor. 

The Milli-Q system was fed with the water (15.0 MΩ·cm) purified from tap water by using 

Elix 3 Advantage (EMD Millipore).
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Preparation of Micropore-Supported NEs.

We employed a microporous Si3N4 membrane to support the nucleoplasm-free NE of a large 

nucleus (~0.4 mm in diameter) isolated from the stage VI oocyte of a Xenopus laevis frog.24 

Oocytes were extracted from the ovary cluster of an adult female frog37 (NASCO, Fort 

Atkinson, WI) and stored at 18 ºC for less than three days prior to use. The nucleus was 

isolated from the oocyte in the isotonic 1.5% poly(vinyl pyrrolidone) (PVP) solution of 

mock intracellular buffer (MIB) at pH 7.4 containing 90 mM KCl, 10 mM NaCl, 2 mM 

MgCl2, 1.1 mM EGTA, 0.15 mM CaCl2, and 10 mM HEPES.29 EGTA was used to mimic a 

physiological concentration of free Ca2+ (~200 nM) in oocytes. The isolated nucleus was 

transferred on a microporous membrane that was treated with Cell Tak (BD Biosciences, 

Bedford, MA) as a biological adhesive (see Supporting Information) and placed in an SECM 

cell filled with a hypotonic MIB solution containing 0.55% PVP (Figure 2A). The NE was 

detached from the nucleoplasm of the swollen nucleus and spread over the 200 nm-thick 

microporous membrane under a stereo microscope (SZX-ZB7, Olympus, Center Valley, PA) 

by using minute pins13 without breaking the underlying thin membrane (Figure 2B). For 

SECM studies, the hypotonic MIB solution was replaced with PVP-free MIB as low Ca2+ 

media or a nuclear isolation media (NIM) as high Ca2+ media containing 87 mM NaCl, 3 

mM KCl, 1.5 mM CaCl2, 1 mM MgCl2, 10 mM HEPES at pH 7.4.31,32 For AFM studies, 

the high or low Ca2+ media was exchanged with the same media containing 2.5% 

glutaraldehyde33 to fix micropore-supported NEs. The fixed samples were washed with 

water and dried overnight in ambient air.

AFM.

The tapping mode of AFM (MFP3D AFM, Asylum Research, Santa Barbara, CA) was 

employed to image the topography of fixed NEs supported by microporous membranes. A 

cantilever (HQ:NSC19/Al) was obtained from Mikromasch (Watsonville, CA). The NE 

patches suspended over micropores of a Si3N4 membrane were robust enough for AFM 

imaging, which was performed under dry nitrogen to maintain a humidity of ~25%. The 

cytoplasmic side of the NE was adhered to a microporous membrane and imaged through a 

micropore to observe NPCs without damage of the NE patch (Figure 3A). Higher resolution 

images of the cytoplasmic side were obtained to assess conformation of NPCs (see below). 

The nucleus side of the NE was also imaged to find NPCs on the entire surface including the 

surrounding Si3N4 membrane (Figure 3B). The NE patch over the micropore was recessed 

from the surrounding by ~100 nm. A higher resolution image of the nucleoplasmic side 

(Figure 3C) showed nuclear baskets based on nuclear filaments assembled into the so-called 

distal ring as an indication of good sample preparation.33

SECM.

An SECM instrument was home-built using three-axis piezoelectric positioners with 

capacitive sensors (P-620.2CD and P-620.ZCD, Physik Instrumente, Auburn, MA), piezo 

servo controllers (E-625, Physik Instrumente) and a potentiostat (CHI 802D, CH 

Instruments, Austin TX).38 The positioning system was controlled by using a custom 

Labview program39 (National Instruments, Austin, TX). A micropore-supported NE was set 

up under a tip in the SECM cell as shown in Figure S-1A. A glass-sealed Pt tip was 
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fabricated by laser-assisted pulling, heat annealing, and focused-ion-beam milling22,40 and 

characterized by scanning electron microscopy and cyclic voltammetry to determine inner 

and outer diameter of ~1 and ~2 μm, respectively. A tip was protected from electrostatic 

discharge by grounding the tip and nearby objects41,42 and maintaining sufficiently high 

humidity (>30%).38,43,44 Pt wires were used as a counter and quasi-reference electrode of 

two-electrode cell. The tip current was measured with the cell-on-between-run function41 of 

the potentiostat without relay switches38,45 to prevent tip etching. An SECM stage was 

accommodated in a faraday cage equipped with metallic heat sinks and surrounded 

polystyrene foams (Figure S-1B) to maintain stable temperature and, subsequently, 

minimize thermal drift.46

RESULTS AND DISCUSSION

SECM Imaging of NE Permeability.

We employed SECM imaging to investigate the NPC-mediated transport of small redox 

probes across the NE spread over a microporous Si3N4 membrane (Figure 1). The 

nucleoplasm-free NE was prepared (Figure 2) as established for fluorescence transport 

studies,47 which ensured the physiological function of NPCs on the NE patches in MIB, i.e., 

to mediate signal-dependent transport of passively impermeable large proteins by nuclear 

transport receptors when the proteins are labeled with nuclear localization or export signal 

peptides.1,16 In this study, we employed 3 μm-diameter pores to support small patches of the 

NE (Figure 2B), which were robust enough for AFM imaging of individual NPCs48 (Figure 

3). Moreover, 3 μm-diameter pores were large enough in comparison with a 1 μm-diameter 

Pt tip to allow the transport of redox probes under the tip without hindrance from the pore 

wall (see below). Advantageously, the nucleoplasm-free NE caused minimal tip fouling 

during SECM-based imaging and permeability measurement of multiple NE patches. 

Previously, we were not able to image an intact nucleus using a 1 μm-diameter Pt tip,22-24 

which was fouled by the adsorption of small proteins leaching from the nucleoplasm, 

thereby enabling only a quick approach curve measurement with FcTMA+.

Specifically, SECM images were obtained in the constant-height mode, where a Pt tip was 

scanned at a fixed vertical position over the nucleoplasmic side of a micropore-supported 

NE. The vertical position was initially selected by bringing the tip to the substrate until the 

amperometric tip current, iT, based on steady-state diffusion-limited electrolysis of a redox 

probe decreased to 70 % of the corresponding tip current in the bulk solution, iT,∞, as given 

by

iT, ∞ = 4xnFDwc0a (1)

where x is a function of RG49 (= rg/a; a and rg are the tip radii of Pt and glass sheath; see 

Figure 1A), n is the number of electrons transferred in the tip reaction (= 1 in this study), 

and Dw and c0 (= 0.3 mM with the exception of Ru(NH3)6
3+) are the diffusion coefficient 

and concentration of a redox probe in solution. The normalized tip current, iT/iT,∞, of 0.70 

corresponded to the normalized tip–substrate distance, d/a, of 0.95, e.g., d = 475 nm with a = 
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500 nm, when the tip approached a part of the NE blocked by the underlying Si3N4 surface 

of a microporous membrane to observe a purely negative feedback effect.

Figure 4A shows a constant-height SECM image of a micropore-supported NE as obtained 

using FcTMA+ in MIB. Higher tip currents were observed over eight pores, 1–8, aligned 

with the periodicity expected for the microporous membrane (Figure S-2). A higher tip 

current over each NE patch is attributed to the NPC-mediated transport of FcTMA+ from the 

bottom solution to the tip, which depleted FcTMA+ to create its local concentration gradient 

across the NE (Figure 1A). The resultant flux of FcTMA+ under a 1 μm-diameter tip is 

mediated by ~25 NPCs with a density of ~40 NPCs/μm2 as determined by AFM (see below). 

Pores 1–8 were fully covered with the NPC-perforated NE, which only partially blocked the 

transport of FcTMA+ to yield high normalized tip currents of ~0.80 over the center of each 

pore in comparison with the surrounding. Well-defined disked-shaped images were obtained 

at pores 3, 4, 5, and 7. Only pores that gave such ideal images were further studied to obtain 

reproducible and reliable approach curves as measures of NE permeability (see below). 

Noticeably, tip currents were slightly higher over pores 3 and 5 than other pores. This result 

indicates that the NE was recessed deeper into pores 3 and 5 to increase the tip–NE distance 

and, subsequently, the tip current. In fact, the ~100 nm-deep recession of the NE into a 

micropore was observed by AFM (Figure 3B). By contrast, the image of pore 1 yielded 

lower tip currents at the left-hand side of the NE patch, which was perhaps blocked by 

residues of the nucleoplasm. We did not measure an approach curve when the image of a 

pore was not a well-defined disk shape, because an approach curve at such a pore was not 

reproducible or reliable.

Figure 4B shows a constant-height image obtained by using 3 mM Ru(NH3)6
3+ in MIB, 

where a higher concentration was used to minimize the relative contribution of the oxygen 

reduction reaction to the tip current. The SECM image shows an array of six pores, 9–14, 

which are aligned as expected from the periodicity of the microporous membrane. Pore 12 
yielded a well-defined disk-shaped image with a tip current lower than the tip current in the 

bulk solution, which indicates that pore 12 was uniformly covered with the NE. By contrast, 

the tip current over the entire region of pore 14 was as high as the tip current in the bulk 

solution. This result indicates that pore 14 was open and was not covered with the NE. By 

contrast, low tip currents at the left-hand side of pore 13 indicate that this region of the NE 

patch was less permeable (see also pore 1 in Figure 4A).

Approach Curve Measurement of NE Permeability.

The permeability of micropore-supported NE patches to redox probes was determined from 

SECM approach curves, i.e., a plot of the tip current, iT, versus the tip–NE distance, d. 

Specifically, a tip was positioned over the center of a micropore that were uniformly covered 

with the NE as ensured by SECM imaging, e.g., pores 3, 5, and 12 (Figure 4). An approach 

curve was measured by vertically bringing the tip to the center of the NE patch at a scan rate 

of 0.20 μm/s to obtain the steady-state tip current. An experimental approach curve was 

analyzed by solving a SECM diffusion problem using the finite element method22-24,26,27,50 

as detailed in Supporting Information. In this simulation, a boundary condition at the NE 

was defined by assuming that the NE was uniformly permeable to a redox probe, although 
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the probe molecule can be transported through NPCs, but not through the surrounding 

double-membrane regions of the NE. With this assumption, a redox probe was transferred 

across the NE at a rate, vNE, from the bottom solution (the cytoplasmic side) to the top 

solution (the nucleoplasmic side) as given by

vNE = k(cC − cN) (2)

where k is the uniform permeability of the NE and cN and cC are the concentrations of the 

redox probe at nucleoplasmic and cytoplasmic sides of the NE, respectively. The apparent 

permeability of the NE is related to the actual permeability of NPCs by the effective medium 

theory25-27 (see below).

Figure 5A exemplifies approach curves with FcTMA+ in MIB (red solid line) and NIM (blue 

solid line) as low and high Ca2+ media, respectively. Permeability study of NIM-incubated 

NEs is significant, because NIM has been used to prepare NE samples for AFM without 

characterization of their permeability.31,32 Approach curves were normalized and fitted well 

with those simulated by the finite element method to determine the permeability of the NE 

as well as the tip–NE distance. As the tip approached to the NE, the tip current decreased, 

because the NE partially hindered the diffusional access of a redox probe to the tip. The tip 

current, however, was still higher over the NE patch than expected over an insulating 

substrate (dotted line), because the NE was perforated by NPCs to transport redox probes. 

Best fits between experimental and simulated approach curves of FcTMA+ were obtained by 

adjusting permeability to yield higher k values in MIB (0.068 ± 0.006 cm/s; N = 9) than in 

NIM (0.039 ± 0.001 cm/s; N = 3). This difference in permeability was seen also in the 

approach curves, where the tip current at the NE in MIB was always higher than at the NE in 

NIM. The permeability of MIB-incubated NE patches to FcTMA+ was closer to the 

permeability of MIB-incubated intact NEs to this redox probe, i.e., 0.059 cm/s.22 Lower 

permeability of the NIM-incubated NE is attributed to a change in the conformation of 

transport barriers caused by a high concentration of Ca2+ as observed by AFM (see below).

The finite element simulation also yielded a concentration gradient of FcTMA+ (Figure 5B), 

which is locally depleted under the tip to drive a flux of FcTMA+ across the NE. The 

concentration gradient is not continuous across the NE, which ensures that the resultant tip 

current at the short tip–NE distances was controlled by the kinetics of FcTMA+ transport 

across the NE, not by the diffusion of FcTMA+ from the bottom solution to the NE or from 

the NE to the tip.24 It should be noted that a small 1 μm-diameter Pt tip with a very thin 

glass sheath was nanofabricated22,40 to penetrate the micropore with a negligible feedback 

effect from the pore wall when the tip approached the NE slightly recessed into a micropore 

as shown by AFM (Figure 3A). In fact, the simulated gradient of FcTMA+ concentration 

was laterally confined under the tip (Figure 5B) and, subsequently, was not affected by the 

surrounding Si3N4 membrane including adjacent pores. Accordingly, the simulated tip 

current was nearly unaffected when a tip moved through the center of a micropore without 

the NE (dashed line in Figure 5A).
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Ca2+ Effect on Barrier Permeability.

We measured and analyzed approach curves with Fc(CH2OH)2, Ru(NH3)6
3+, and 

Co(phen)3
3+ in addition to FcTMA+ to systematically find the higher permeability of NEs 

incubated in MIB containing a sub-micromolar concentration of Ca2+ (~200 nM) than in 

NIM containing a low millimolar concentration of Ca2+ (1.5 mM). This finding was 

quantitatively represented by linear relationships between the NE permeability and diffusion 

coefficients of redox probes in solution, which yielded a larger slope for more permeable 

NEs incubated in MIB (Figure 6). These linear relationships are expected from the effective 

medium theory25-27 based on the assumption that the NE is perforated by NPCs as 

cylindrical nanopores, thereby yielding22

k = 2Nr
2l ∕ πrγ + 1 ∕ f (σ)Dw (3)

with

f (σ) = 1 + 3.8σ5 ∕ 4

1 − σ (4)

where N is the pore density, r is the pore diameter, l is the pore length, γ is the ratio of a 

diffusion coefficient in the nanopore, DNPC, against Dw, and σ (= πNr2) is the membrane 

porosity. A slope of 1.2 × 104 cm–1 for MIB-incubated NEs corresponds to eq 3 with 

geometrical parameters of r = 25 nm, l = 35 nm, and N = 40 NPCs/μm2 as determined for 

the Xenopus oocyte nucleus by cryo-electron tomography.28,29 In this analysis, γ = 1 was 

used to indicate that redox probes are unaffected by transport barriers to diffuse across the 

nanopore as freely as in solution. This result is consistent with low concentrations of FG 

repeats in the nanopore,9,19 which is mainly filled with the electrolyte solution. In fact, the 

size of water-filled spaces (5.2 nm) among the gel-like network of FG repeats51 is much 

larger than an effective diameter of 1.3 nm52 for Co(phen)3
3+, which is the largest among the 

redox probes examined in this study. By contrast, the lower permeability of NIM-incubated 

NEs is represented by a slope of 7.2 × 103 cm–1, which is 1.7 times lower than the slope 

determined for MIB-incubated NEs. The lower slope corresponds to γ = 0.45 in eq 3 with 

the same radius, length, and density as employed for the analysis of MIB-incubated NEs. 

The lower γ value indicates that a millimolar concentration of Ca2+ viscosifies transport 

barriers, which is consistent with a change in barrier conformation shown by AFM (see 

below). More quantitatively, the Stokes–Einstein equation with the lower γ value indicates 

that the high Ca2+ concentration increases viscosity in the nanopore by a factor of 2.2 (= 

1/γ).

It should be noted that linear relationships between k and Dw values for redox probes with 

zero, one, and three positive charges (Figure 6) indicate no electrostatic effect from 

positively charged residues of amino acids that are abundant between FG repeats to facilitate 

the transport of negatively charged transport receptors.10 In addition, this study was limited 

to neutral and positively charged redox probes, because a nucleoplasm-free NE fouls a Pt tip 
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more seriously for anionic redox probes, i.e., Fe(CN)6
4–, FcCO2

–, FcCH2CO2
–, and FcSO3

–. 

The tip fouling is attributed to leaching of proteins from residual nucleoplasm or Cell Tak, 

which was used to adhere the NE to a microporous membrane. Moreover, a stable or 

reasonable tip current was not obtained even without the NE when Fc(CO2
–)2, Ru(CN)6

4–, 

IrCl62–, Fe(EDTA)–/2–, Fc(SO3
–)2, and various isomers of anthraquinone sulfonate were 

tested.

Ca2+ Effect on Barrier Conformation.

We employed AFM to find that conformations of transport barriers are different between 

NPCs incubated in MIB and NIM with high and low Ca2+ concentrations, respectively. As 

reported previously for both fixed and non-fixed NE samples,33 three conformations, i.e., 

recessed, entangled, and plugged states, were observed at the central region of NPCs by 

AFM when we imaged the cytoplasmic side of micropore-supported NEs prepared and fixed 

in MIB containing a physiological concentration of Ca2+ (~200 nM; Figure 7A). Cross 

sections of NPCs at the corresponding states (Figure 7B) demonstrate remarkable 

differences in topography. A large “plug-like” feature (red line) is considered as a 

macromolecule caught in transit during translocation through the nanopore.53 A plug can be 

as high as 10 nm in comparison with a recessed NPC (blue line). By contrast, a small 

protrusion at the center of an entangled NPC (purple line) is attributed to the transient 

intermingling of FG nups.33 Specifically, Lim and co-workers imaged NPCs of Xenopus 
oocyte nuclei by high-speed AFM to demonstrate that FG nups are intermingled transiently 

to yield a protrusion of ~1.7 nm33 as observed in our AFM images. Overall, we analyzed 

AFM images of 100 NPCs on three micropore-supported NEs prepared and incubated in 

MIB to find that ~50% of NPCs were entangled (see Figure S-4A). The population of 

plugged NPCs (~25%) was similar to that of recessed NPCs.

AFM images of NEs incubated with a low millimolar concentration of Ca2+ in NIM (Figure 

7C) revealed that NPCs were dominantly recessed (~80%; see Figure S-4B) when the 

topography of 93 NPCs on two micropore-supported NEs was analyzed. This result is 

consistent with that of previous AFM studies of Xenopus oocyte nuclei in NIM,31,32 where 

recessed NPCs were dominant. In addition, we found that populations of plugged and 

entangled NPCs were ~0% and ~20%, respectively, when the NE was incubated in NIM. It 

should be noted that the large population of recessed NPCs was formed irreversibly in NIM 

owing to its high Ca2+ concentration. The population of each conformation was not changed 

when the NIM-incubated NE was exposed to MIB for three hours. Moreover, the micropore-

supported NE was incubated in MIB with a high concentration of Ca2+ (1.5 mM) as 

contained in NIM to find a high population of recessed NPCs (~80%) and the absence of 

plugged NPCs as observed in NIM. This result ensures that a high concentration of Ca2+ 

causes conformational changes of transport barriers.

It should be noted that the recession of NPCs imaged by AFM (Figure 7B) is shallower (~10 

nm in depth) and narrower (~25 nm in diameter) than the actual pore of NPCs, because our 

AFM cantilever tips do not have a high aspect ratio to deeply penetrate into the pore.54 In 

fact, actual pores are deeper and wider as determined by cryo-electron tomography28,29 and 

considered in eq 3 (see above).
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Ca2+-Dependent Permeability–Conformation Relationships.

We propose a model to explain why the NE is less permeable to redox probes in NIM where 

NPCs are unplugged. Specifically, we attribute the lower permeability of NIM-incubated NE 

to less permeable transport barriers that are unplugged and viscosified by a high 

concentration of Ca2+ to yield recessed NPCs. Accordingly, our model is based on two types 

of recessed NPCs, which can be as authentic as observed in MIB or affected by a low 

millimolar concentration of Ca2+ to yield lower permeability. The authentically recessed 

state must be present even in NIM, because it is dynamically equilibrated with the entangled 

state as demonstrated in a recent high-speed AFM study of NPCs.33 Quantitatively, we 

performed AFM imaging of MIB-incubated NE to find a 2:1 ratio of entangled and recessed 

NPCs (50% and 25% of 100 NPCs, respectively, as mentioned earlier) as discussed above. 

By contrast, NIM-incubated NEs had entangled and recessed NPCs with populations of 

20 % and 80 %, respectively. When the same dynamic equilibrium between entangled and 

recessed states (2:1) is assumed for MIB and NIM in our model (Scheme 1), only 10% of 

NPCs are expected to be recessed in NIM, where 70% of NPCs are irreversibly converted to 

the recessed state with low permeability and are not equilibrated with authentic states. Our 

model also accounts for a loss of plugged NPCs in NIM, which facilitates the irreversible 

conversion of the plugged state to the less permeable recessed state through the authentic 

recessed state. The Ca2+-induced loss of plugging macromolecules is remarkable because 

the plugged state was maintained during the hour-long preparation of AFM samples in 

various solutions containing no macromolecule,33 thereby indicating the intrinsically slow 

conversion of the plugged state to the authentic recessed state (Scheme 1).

Overall, we employed AFM and SECM to correlate the effects of a high Ca2+ concentration 

on the conformation and permeability of NPCs in contrast to previous studies, where either 

conformation or permeability was investigated. Structurally, immune-electron microscopy 

demonstrated that spatial distributions of transport barriers are altered by interactions of a 

low millimolar concentration of Ca2+ with negatively charged residues of amino acids 

between FG repeats.30 Our model hypothesizes that transport barriers are irreversibly 

recessed and viscosified by a high concentration of Ca2+ to yield lower permeability 

(Scheme 1). By contrast, importin-assisted nuclear protein import was inhibited at a high 

intracellular Ca2+ level34 to exemplify the importance of nuclear calcium signaling, e.g., in 

the regulation of gene transcription35 and brain function.36 Interestingly, the electrostatic 

Ca2+ effect not only reveals the significance of negative sites on transport barriers,30 but also 

contrasts to the effect of hydrophobic ions on the permeabilization of NPCs to passively 

impermeable proteins through hydrophobic interactions with FG barriers.23

It should be noted that this study revealed the need for nanoscale SECM55,56 to test our 

model further. Specifically, the recessed state formed in NIM must be less permeable than at 

least one of the authentic states to account for the lower permeability of NIM-incubated 

NEs. This requirement is satisfied in our model, which assumes that the authentic recessed 

state is more permeable than the recessed state formed in NIM. The permeability of each 

state, however, is not resolvable in this study of multiple NPCs, thereby preventing a 

comparison of permeability among different states to experimentally test our model. Such a 

comparison will require nanoscale SECM measurements of single NPC permeability as 
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demonstrated for solid-state nanopores.57,58 Moreover, SECM can monitor the capture and 

release of an individual nanoparticle at a single nanopore by monitoring a change in the tip 

current controlled by the translocation of a redox active molecule through the pore.59,60 The 

non-contact operation of nanoscale SECM is required to stochastically detect the 

translocation of individual macromolecules at single NPCs, which was unsuccessful by 

destructive electrophysiological methods.14 Significantly, nanoscale SECM will also 

complement single-molecule fluorescence microscopy,61 where fluorescence tags, e.g., GFP 

and quantum dots, are attached to transported macromolecules to potentially alter their 

interactions with transport barriers.

CONCLUSIONS

In this work, we employed SECM to successfully image and measure the high permeability 

of NPCs based on the diffusion-controlled translocation of small redox probes without any 

hindrance from transport barriers. We conclude that highly disordered FG-based barriers are 

spatially too disperse to block the diffusion of the small probes. Our result was obtained 

from authentic NPCs to argue that the concentrations of FG-rich nups attached to artificial 

NPCs were non-physiologically high to block the transport of small ions significantly.15 

Moreover, we demonstrated that the NPC-mediated transport of redox probes with up to 

three positive charges was not affected by positive residues of amino acids that are abundant 

between FG repeats.12 By contrast, we attribute Ca2+-dependent permeability and 

conformation of NPCs to interactions of Ca2+ with negative residues of amino acids between 

FG repeats. It is interesting to point out that nucleocytoplasmic protein transport is also 

Ca2+-dependent in cultured cells34 to exemplify the importance of nuclear calcium 

signaling.35,36 More work, however, is needed to connect the intracellular Ca2+ effects to the 

Ca2+ effects on the isolated nuclei found in this study.

Technologically, this study manifested future opportunities for nanoscale SECM55,56 to 

investigate the mechanism of NPC-mediated molecular transport at the single nanopore 

level. Specifically, nanoscale SECM is required to resolve the permeability of individual 

NPCs at different conformations as revealed by AFM.33 The fast transport of small redox 

probes through NPCs is advantageous for the study of single NPCs by nanoscale SECM, 

which was applied to successfully image solid-state nanopores with similar diameters of 

down to ~40 nm.57,58 Both permeability and topography of single nanopores were 

determinable by the finite element analysis of nanoscale SECM images,57,58 thereby 

eliminating the need of AFM. Moreover, the nucleoplasm-free NE supported by a 

microporous membrane will facilitate nanoscale SECM measurements, which were 

unsuccessful with intact nuclei owing to tip fouling.23 Ultimately, nanoscale SECM is 

attractive as a non-contact and non-destructive approach59,60 to stochastically detect the 

NPC-mediated translocation of single macromolecules without chemical modification in 

contrast to electrophysiological14 and fluorescence61 approaches.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Scheme of tip-induced transfer of a redox probe molecule (red dots) across the NE 

supported by a micropore. The tip is positioned over the nucleoplasmic side of the NE. Blue 

dots represent the product of electrolysis at the tip. The tip–NE distance is given by d. (B) 

Redox probes used in this study; (ferrocenylmethyl)trimethylammonium, 1,1´-

ferrocenedimethanol, hexaammineruthenium(III), and tris(1,10- phenanthroline)cobalt(III).
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Figure 2. 
Photographs of (A) the swollen nucleus with the NE detached from the nucleoplasm and (B) 

the nucleoplasmic side of the NE spread on the microporous region of a Si3N4 membrane.
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Figure 3. 
AFM images of (A) cytoplasmic and (B) nucleoplasmic sides of the NE supported by a 

micropore. (C) AFM image of nuclear baskets as obtained from the nucleoplasmic side of a 

micropore-supported NE patch.
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Figure 4. 
Constant-height SECM images of NEs spread over microporous Si3N4 membranes in MIB 

as obtained by using (A) FcTMA+ and (B) Ru(NH3)6
3+. Sizes of the respective images are 

15 μm × 15 μm and 10 μm × 15 μm. Colored scale bars indicate the normalized tip current. 

The tip was brought to the left top corner, where the normalized tip current was ~0.70. The 

tip was scanned laterally at a rate of 1 μm/s with a tip step size of 0.25 μm for both 

directions.
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Figure 5. 
(A) SECM approach curves of FcTMA+ at micropore-supported NEs prepared in MIB and 

NIM. Simulated curves at the NE used (a, k) = (0.59 μm, 0.061 cm/s) and (0.45 μm, 0.040 

cm/s) for MIB and NIM, respectively, with RG = 2. (B) The corresponding concentration 

profile of FcTMA+ simulated around a nanometer-wide gap between the tip and the NE 

prepared in MIB. The scale bar indicates the concentration of FcTMA+.
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Figure 6. 
Permeability of micropore-supported NEs plotted against diffusion coefficient for redox 

probes in MIB and NIM (red and blue symbols, respectively). Permeability values are 

average values determined from 3–9 approach curves. Solid lines represent the best linear 

fits.
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Figure 7. 
(A) AFM image of the cytoplasmic side of a micropore-supported NE prepared in low Ca2+ 

media, MIB. Red, purple, and blue arrows indicate examples of plugged, entangled, and 

recessed NPCs. (B) Cross sections of the respective NPCs. (C) AFM image of the 

cytoplasmic side of a micropore-supported NE prepared in high Ca2+ media, NIM, where 

only recessed and entangled NPCs were observed as represented by blue and purple arrows, 

respectively.
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Scheme 1. 
Ca2+ Effect on Conformational Equilibrium of Transport Barriers of NPCs.
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