135 research outputs found

    Regional cerebral blood flow and cellular environment in subarachnoid hemorrhage: A thermal doppler flowmetry and microdialysis study

    Get PDF
    Background Cerebral microdialysis enables assessment of regional metabolic physiology and provides biomarkers for clinical correlation in critical conditions, such as subarachnoid hemorrhage (SAH). The aim of our current study was to investigate the correlation between regional cerebral blood flow and microdialysis parameters (glucose, lactate, glycerol, pyruvate concentrations, and lactate/pyruvate metabolic ratio) in patients with SAH. Materials and methods Twenty-one patients with SAH were enrolled in our retrospective study. Cerebral blood flow (CBF) based on thermal diffusion methodology, the thermal coefficient K, and microdialysis biochemical markers were recorded. The duration of the brain monitoring was 10 days. Results Microdialysis glucose concentration was inversely related to the cerebral temperature and to the L/P ratio. Furthermore, it was positively correlated to all other microdialysis parameters but glycerol. The K coefficient was strongly and positively correlated with the temperature and marginally with the CBF. The L/P ratio was positively correlated with glycerol, while it was inversely correlated with the CBF. Patients who died had elevated L/P ratio and K coefficient compared to the survivors in our series. Conclusions Thermal conductivity coefficient may change over time as cerebral injury progresses and tissue properties alter. These alterations were found to be associated with the microdialysis metabolite concentrations and the CBF itself. The microdialysis biochemical indices of cell stress and death (glycerol, L/P ratio) were positively related to each other, while the measured L/P metabolic ratio was higher among patients who died

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal

    RoboPol: AGN polarimetric monitoring data

    Get PDF
    We present uniformly reprocessed and re-calibrated data from the RoboPol programme of optopolarimetric monitoring of active galactic nuclei (AGN), covering observations between 2013, when the instrument was commissioned, and 2017. In total, the dataset presented in this paper includes 5068 observations of 222 AGN with Dec > -25 deg. We describe the current version of the RoboPol pipeline that was used to process and calibrate the entire dataset, and we make the data publicly available for use by the astronomical community. Average quantities summarising optopolarimetric behaviour (average degree of polarization, polarization variability index) are also provided for each source we have observed and for the time interval we have followed it.Comment: Accepted to MNRA

    A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly

    Get PDF
    Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins

    The Hellenic emergency laparotomy study (HELAS): a prospective multicentre study on the outcomes of emergency laparotomy in Greece

    Get PDF
    Background Emergency laparotomy (EL) is accompanied by high post-operative morbidity and mortality which varies significantly between countries and populations. The aim of this study is to report outcomes of emergency laparotomy in Greece and to compare them with the results of the National Emergency Laparotomy Audit (NELA). Methods This is a multicentre prospective cohort study undertaken between 01.2019 and 05.2020 including consecutive patients subjected to EL in 11 Greek hospitals. EL was defined according to NELA criteria. Demographics, clinical variables, and post-operative outcomes were prospectively registered in an online database. Multivariable logistic regression analysis was used to identify independent predictors of post-operative mortality. Results There were 633 patients, 53.9% males, ASA class III/IV 43.6%, older than 65 years 58.6%. The most common operations were small bowel resection (20.5%), peptic ulcer repair (12.0%), adhesiolysis (11.8%) and Hartmann’s procedure (11.5%). 30-day post-operative mortality reached 16.3% and serious complications occurred in 10.9%. Factors associated with post-operative mortality were increasing age and ASA class, dependent functional status, ascites, severe sepsis, septic shock, and diabetes. HELAS cohort showed similarities with NELA patients in terms of demographics and preoperative risk. Post-operative utilisation of ICU was significantly lower in the Greek cohort (25.8% vs 56.8%) whereas 30-day post-operative mortality was significantly higher (16.3% vs 8.7%). Conclusion In this study, Greek patients experienced markedly worse mortality after emergency laparotomy compared with their British counterparts. This can be at least partly explained by underutilisation of critical care by surgical patients who are at high risk for death

    Development and internal validation of a clinical prediction model for serious complications after emergency laparotomy

    Get PDF
    Purpose Emergency laparotomy (EL) is a common operation with high risk for postoperative complications, thereby requiring accurate risk stratification to manage vulnerable patients optimally. We developed and internally validated a predictive model of serious complications after EL. Methods Data for eleven carefully selected candidate predictors of 30-day postoperative complications (Clavien-Dindo grade >  = 3) were extracted from the HELAS cohort of EL patients in 11 centres in Greece and Cyprus. Logistic regression with Least Absolute Shrinkage and Selection Operator (LASSO) was applied for model development. Discrimination and calibration measures were estimated and clinical utility was explored with decision curve analysis (DCA). Reproducibility and heterogeneity were examined with Bootstrap-based internal validation and Internal–External Cross-Validation. The American College of Surgeons National Surgical Quality Improvement Program’s (ACS-NSQIP) model was applied to the same cohort to establish a benchmark for the new model. Results From data on 633 eligible patients (175 complication events), the SErious complications After Laparotomy (SEAL) model was developed with 6 predictors (preoperative albumin, blood urea nitrogen, American Society of Anaesthesiology score, sepsis or septic shock, dependent functional status, and ascites). SEAL had good discriminative ability (optimism-corrected c-statistic: 0.80, 95% confidence interval [CI] 0.79–0.81), calibration (optimism-corrected calibration slope: 1.01, 95% CI 0.99–1.03) and overall fit (scaled Brier score: 25.1%, 95% CI 24.1–26.1%). SEAL compared favourably with ACS-NSQIP in all metrics, including DCA across multiple risk thresholds. Conclusion SEAL is a simple and promising model for individualized risk predictions of serious complications after EL. Future external validations should appraise SEAL’s transportability across diverse settings

    Erythroid-Specific Transcriptional Changes in PBMCs from Pulmonary Hypertension Patients

    Get PDF
    Gene expression profiling of peripheral blood mononuclear cells (PBMCs) is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression
    • …
    corecore